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This study shows that antibiotic susceptibility data can be used effectively in
the presumptive identification of bacteria. Using 12 antibiotics and determining
the zone sizes for each, 82% of the isolates considered were correctly identified
without any other information. If the inability to distinguish between Esche-
richia coli and Shigella is disregarded, the percentage of correct identification is
92%. The method involves determining a set of discriminant functions and
defining each taxon by a unique function. An unknown isolate is identified by
evaluating each discriminant function and assigning the isolate to the taxon
whose discriminant function has the largest value. A total of 468 isolates were

examined. After eliminating the multiply resistant isolates, the remaining 369
isolates were used to determine the discriminant functions for the eight taxa
considered.

Clinical microbiologists often utilize anti-
biotic susceptibility data in an intuitive fashion
to achieve a presumptive identification of an
unknown isolate. Use of such data has the ad-
vantages of being rapidly obtained and at the
same time providing the physician with valua-
ble information regarding therapy. The pur-
pose of this paper is to indicate that the pre-
sumptive identification of bacteria by using an-
tibiotic susceptibility data is both a valid and
accurate procedure.

Several models have been presented for the
computer identification of bacteria. For the
most part these models have been of two gen-
eral types. A Bayesian model has been used
recently by Friedman and co-workers (9, 10).
The necessary estimates of prior probabilities
were obtained from the relative frequency with
which the various species were isolated.
The second model is a maximum likelihood

model. This model is similar to the first, but no
estimates of prior probability are used (7, 12).
Some normalization method is used in all
models of the second type to avoid extremely
small numbers (7).
Both types of models require statistically in-

dependent variables. It is not at all certain
whether this assumption is satisfied in diagnos-
tic tests. Friedman and MacLowry (9) used a
Bayesian model to identify clinical isolates on
the basis of their antibiotic susceptibility pat-
terns. As they indicate in a discussion of their
results, this critical assumption is probably not
valid for antibiotic susceptibility data.
Another approach to the computer identifica-

tion of bacteria is possible. It utilizes the
models of multivariate statistical analysis. In
these models no a priori assumption regarding
the independence of variables is required. Each
individual observation is considered an m-com-
ponent vector, and the relationships among
these components are examined.

Gyllenberg (11) used one of these models,
namely, principal component analysis, for the
identification of bacteria. After determining
the first three to five principal component
scores on representatives of the species being
considered, each species is located in hyper-
space by determining a centroid. An unknown
isolate is then assigned to the taxon to which it
is closest in terms of Euclidean distance.
Another of these models, one in which dis-

criminant functions are used (1), is illustrated
in this paper. The discriminant functions are
derived from antibiotic sensitivity data and,
with the exception of Escherichia coli and Shi-
gella, are shown to correctly identify 90 to 95%
of the taxa represented.
The discriminant functions are obtained by

solving the following set of equations: pi = d X
+ ci (equation 1), where pi is the score for the
discriminant function i andX is the data vector
for an unknown isolate; as is the transposed
vector of coefficients (aj) obtained from a = S-'
ii (equation 2), where S is the estimate of the
common dispersion matrix and xi is the mean
vector for the species i. The constant c; is evalu-
ated at the centroid ci = -l/2 di xi (equation 3).
The value of pi is a scalar quantity, and an
unknown isolate is assigned to the species for
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which the score of p is maximal (1, 6). The
mathematical details can be found in the text-
book by Anderson (1).

MATERIALS AND METHODS
Bacterial isolates. Four hundred and sixty-eight

isolates representing six genera and nine species of
the Enterobacteriaceae were initially included in the
study. Strains ofE. coli, Shigella sonnei, S. flexneri,
Salmonella typhi, Enterobacter cloacae, E. agglomer-
ans, and Serratia marcescens were chosen from
stock cultures in the Enteric Section, Center for
Disease Control (CDC), Atlanta, Ga. Yersinia pseu-
dotuberculosis isolates were kindly supplied by E.
Thal, National Veterinary Institute, Stockholm. Y.
enterocolitica strains included 14 isolates identified
by the CDC, 44 isolates supplied by L. Lafleur,
Hopital Sainte Justine, Montreal, Canada, and 18
isolates obtained from R. Sakasaki, National Insti-
tute of Health, Tokyo, Japan.

Antibiotic susceptibility tests. High potency
disks (BBL) of the following antibiotics were used:
colistin, nalidixic acid, sulfadiazine, gentamycin,
streptomycin, kanamycin, tetracycline, chloram-
phenicol, penicillin, ampicillin, carbenicillin, and
caphalothin. The procedures of Bauer et al. (2) were
followed. The diameters of the zones of inhibition
were measured to the nearest millimeter. Each iso-
late could then be represented by a 12-component
vector, where each element of the vector was the
diameter associated with a single antibiotic.

Analytical procedures. Preliminary data analy-
sis was performed by using the method of prinicpal
component analysis (1). This method was chosen to
determine whether the isolates under study could be
legitimately considered as representing different
populations (5).
The principal component analysis was performed

by using a slightly modified version of FACTO
(IBM, System/360, Scientific Subroutine Package,
Version III). The first three principal components
were used to determine whether the isolates repre-
sented a homogeneous population.
A discussion of discriminant functions can be

found by Anderson (1). In essence, the method re-
quires an a priori definition of groups from which
are derived a set ofdiscriminant functions. An obser-
vation vector representing an unknown isolate is
used in these functions, and a single scalar quantity
is determined; one scalar is determined for each
discriminant function. The unknown can then be
assigned to the group for which this number is maxi-
mum.

For our purposes the predefined groups repre-
sented the taxa listed above, with the exception that
two Shigella species were combined into a single
taxon. The discriminant functions were derived by
using BMD07M (BMD, Biomedical Computer Pro-
grams, University of California Press, Berkeley,
1970). In the examples below we assumed that all
taxa would be encountered with equal probability.

RESULTS
Antibiotic susceptibility of the isolates.

Before initiating the discriminant analysis of

antibiotic susceptibility, we recognized that the
widespread occurrence ofresistance transfer fac-
tor(s) within the Enterobacteriaceae would com-
plicate the analysis. For this reason we at-
tempted to eliminate those isolates suspected of
containing episomal elements determining mul-
tiple antibiotic resistance. The following crite-
ria had to be met for an isolate to be considered
a member of this group. First, an isolate had to
lack any detectable zone of inhibition around
three or more of the following antibiotics: sulfa-
diazine, streptomycin, kanamycin, tetracy-
cline, chloramphenicol, and ampicillin. Second,
if over one-third of the isolates belonging to a
given taxon showed no zone of inhibition
around one of these antibiotics, that particular
antibiotic was not considered in the definition
of "multiply resistant strains." This definition
resulted in the elimination of 99 isolates (27 E.
coli, 7 Shigella, 41 Salmonella typhi, 1 E. cloa-
cae, 2 E. agglomerans, and 21 S. marcescens)
from discriminant analysis. The discriminant
functions were determined on the remaining
369 strains.

After the "multiply resistant isolates" were
excluded, the average diameter of the radial
diffusion zone for each species was determined.
The results are summarized in Table 1. Casual
inspection of the data indicates that differences
between the groups do exist. For example, the
average diameter of the radial diffusion zone
(i.e., zone size) for cephalothin ranges from
over 33 mm for Y. pseudotuberculosis to 6.1
mm for S. marcescens. However, it would be
very difficult to use the data in Table 1 to
identify an unknown isolate. With the excep-
tion of occasional resistant mutants, the distri-
bution of zone sizes for any antibiotic within
any one species is essentially normal.

Principal component analysis. Before the
necessary discriminant functions could be de-
fined, it was necessary to determine whether
the isolates represented different populations.
Principal component analysis was used for this
purpose (5). If the cultures from each species
represented separate random samples from a
single population, the statistics calculated for
each species, that is, the mean and variance of
principal component scores, should be approxi-
mately equal and should approximate the corre-
sponding population parameters.

Table 2 presents the group means and vari-
ances for the first three principal components.
The inequality of the group means and vari-
ances indicates that the species do, in fact,
represent several populations.

Calculation of the discriminant functions.
To determine the discriminant functions, an a
priori definition of groups is required. For the
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TABLE 1. Mean diameter of radial diffusion zones observed for 8 bacteria and 12 antibiotics

Mean diam (mm)

E. W Y. Y. Grand
Antibiotic E. coli Shigella S. typhi E. agglo-E mr- entero- pseudo- mean

(73)a sp. (22) (39) c(oacae merans cescens colitica tuber-(1) (18) (102) (76) culosis

Colistin 10.3 12.7 13.8 10.2 12.7 8.9 15.2 10.6 11.6
Nalidixic acid 22.0 22.7 23.2 19.7 24.4 27.6 27.2 30.8 25.3
Sulfadiazine 19.3 11.4 28.1 21.9 25.4 22.7 28.2 25.7 23.3
Gentamycin 18.0 20.5 23.9 20.1 22.4 23.3 22.0 25.0 21.8
Streptomycin 14.4 12.9 14.2 16.4 19.5 17.8 17.4 21.4 16.6
Kanamycin 19.2 21.3 23.2 20.9 24.3 24.6 23.1 28.3 22.9
Tetracycline 17.6 16.8 23.5 16.2 21.7 13.4 21.9 21.4 18.2
Chloramphenicol 22.0 21.1 26.8 20.4 26.7 25.3 26.8 29.9 25.0
Penicillin 6.6 6.8 13.2 6.0 9.3 6.0 6.5 24.7 8.2
Ampicillin 18.5 18.3 24.6 8.6 16.7 11.9 11.2 33.1 16.0
Carbenicillin 23.1 22.7 25.0 21.8 18.9 25.0 12.3 36.3 22.0
Cephalothin 16.4 17.6 25.0 7.3. 22.6 6.1 10.9 33.4 14.2

a Number in parentheses represents the number of individual isolates.

TABLE 2. Summary ofprincipal component analysis

Principal component

Group Na 1 2 3

Mean S2b Mean S2 Mean S2

E. coli 73 -0.624 0.46 0.364 0.69 0.229 0.19
Shigella sp. 22 -0.381 1.00 0.787 2.76 0.287 0.49
S. typhi 39 2.142 0.95 0.602 0.37 1.325 0.18
E. cloacae 19 -1.010 0.47 -0.555 0.25 -0.484 0.10
E. agglomerans 18 1.305 1.89 -0.564 0.91 0.835 0.45
S. marcescens 102 0.226 1.65 -1.140 0.52 -1.616 0.58
Y. enterocolitica 76 0.411 1.04 -1.744 0.74 0.974 0.37
Y. pseudotuberculosis 20 4.885 0.57 1.456 0.14 0.116 0.60

a N, Number of isolates per group.
b S2, Within-group variance.

purposes of the present discussion, the groups
will represent the taxa listed in Materials and
Methods. Thirty-three isolates were removed at
random from the 369 isolates remaining after
the multiply resistant strains were eliminated.
These isolates were to be used to test the ability
of the discriminant functions to identify un-
known isolates. Thus, the discriminant func-
tions were determined on a total of 336 isolates
representing eight different groups. The dis-
criminant functions are given in Table 3.
Once the discriminant functions have been

determined, an unknown isolate is assigned to
the taxon in which the value of 6i X + ci is the
largest. In this equation, 6i represents the trans-
pose ofthe discriminant function,X is the obser-
vation vector for the unknown isolate in which
each element of the vector is the zone size in
millimeters on the appropriate antibiotic, and
ci is a constant.

Classification of unknown. To test the abil-
ity of the discriminant functions to identify un-

known isolates, the functions were tested by
using the observation vectors of the 33 isolates
that had been omitted from the determination
of the discriminant functions. The results of the
classification are summarized in Table 4.
The ability of the functions to properly iden-

tify unknown isolates is acceptable. With the
exception of the confusion presented by the E.
colilShigella group, the identification agreed
with conventional methods (8) 92% of the time.
The inability to distinguish E. coli from Shi-
gella was not unexpected, since deoxyribonu-
cleic acid homology studies between the two
genera failed to demonstrate any significant
differences (3).

In addition to assigning an unknown to the
appropriate class, the posterior probability that
an unknown organism belongs to the assigned
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TABLE 3. Coefficients for the discriminant functions

Discriminant functiona
AntibioticAntibiotic1 2 3 4 5 6 7 8

Colistin 0.91 1.21 1.22 [ 0.62 1.15 0.12 1.75 0.50
Nalidixic acid 0.68 0.66 -0.05 0.11 0.31 1.10 0.89 1.19
Sulfadiazine 0.16 -0.19 0.42 0.31 0.24 0.22 0.32 0.30
Gentamycin 2.25 2.92 4.38 3.13 2.85 3.46 2.72 2.86
Streptomycin -0.53 -0.87 -1.01 -0.58 -0.54 -0.85 -0.68 -0.64
Kanamycin 0.07 0.24 -0.38 0.36 0.50 0.37 0.34 0.54
Tetracycline 0.24 0.23 0.52 0.19 0.31 -0.21 0.32 0.06
Chloramphenicol 0.90 1.14 1.17 0.90 1.13 1.17 0.97 1.04
Penicillin 0.16 0.12 1.09 1.01 0.62 1.05 0.92 3.01
Ampicillin -0.03 -0.20 -0.06 -0.74 -0.46 -0.71 -0.16 -0.59
Carbenicillin 0.32 0.27 0.18 0.56 0.19 0.63 -0.06 0.46
Cephalothin 0.97 1.14 1.36 0.15 1.57 -0.08 0.31 1.66

Constantb -57.02 -69.96 -103.98 -57.53 -86.07 J -77.76 j_-79.94 [ -143.36

al 1, E. coli; 2, Shigella sp.; 3, S. typhi; 4, E. cloacae; 5, E. agglomerans; 6, S. marcescens; 7, Y.
enterocolitica; 8, Y. pseudotuberculosis. Total number of isolates used to determine function was 336. The
numbers in the columns represent the coefficients (a'j).

bC = -1/2a -i.

TABLE 4. Classification of33 unknown isolates by discriminant analysis

Discriminant function group

GroUpa E. S. Y. Y
E. coli Shigella S. typhi E. aggo- mar- enter pseudo-

Sp.*cloacae rnerans cescens colitica tubosiculosis

E. coli 4 3
Shigella sp. 1 1
S. typhi 3
E. cloacae 1
E. agglomerans 1
S. rnarcescens 1 9
Y. enterocolitica 1 6
Y. pseudotuberculosis 2

a Groups were established by conventional biochemical tests (8).

group given the value of the discriminant func-
tion can be calculated by solving the following
equation:

p = exp(pik) (4)
q

L exp (Pik)

where Pik represents the posterior probability
of case k coming from group i, Pik iS the value of
the discriminant function for case k evaluated
for the discriminant function i (equation 1), and
q represents the total number of discriminant
functions available. An example of the type of
results obtained are shown in Table 5. Al-
though in all four cases the unknown is as-
signed to one of the eight groups, in one in-
stance the probability associated with this iden-
tification was not high. That is, isolate 31 was

assigned to Y. enterocolitica, but with a poste-
rior probability of only 0.58. In this case objec-
tive consideration of the posterior probabilities
indicates that identification of the isolate as Y.
enterocolitica is tenuous at best.

DISCUSSION
The preceding data illustrate another ap-

proach to the computer identification of bacte-
ria. Although the mathematics at first seems
cumbersome, several computer programs are
available that perform the necessary calcula-
tions (6).
The question that must be answered in prob-

lems of identification is: Given an individual
isolate with certain measured characteristics,
from which population does it come? Phrasing
the problem in this manner immediately sug-
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TABLE 5. Posterior probabilities ofunknown organism isolate belonging to the group to which it is assigned

Probability of identification

Isolate no. p.sSuY.o-Isolatecol Shigella S. typhi cloa agglo- mar- entero- tur-
merans cescens colitica cubesi

culosis

1 0.027 0.973a 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0995 0.000 0.000 0.000 0.000 0.000
21 0.000 0.000 0.000 0.086 0.000 0.907 0.006 0.000
31 0.002 0.415 0.000 0.000 0.003 0.000 O058 0.000

a Italicized number indicates taxon to which unknown was assigned.

gests the two major dilemmas that are com-
mon to all attempts to devise a computer identi-
fication algorithm. First, all the pertinent taxa
involved must have been included and ade-
quately defined. An individual cannot be as-
signed to a taxon that does not "exist." Further-
more, when defining the groups extreme care
must be taken that the definitions are based on
random samples from the appropriate popula-
tions. In the example above, we considered only
eight different populations, all of which are
defined by conventional biochemical methods
(8).
These taxa were then "redefined" in terms of

antibiotic susceptibility data by the derivation
of the eight discriminant functions (Table 3).
The use of discriminant functions has one ma-
jor advantage over likelihood models (7, 12) and
Bayesian models (9, 10); namely, the tests
being measured need not be independent. The
discriminant functions are derived in such a
way that differences between the groups is max-
imized. Since equation 2 involved an estimate
of the common dispersion matrix, a critical as-
sumption is that the group dispersion matrixes
be equal. This assumption may not be valid in
the above example. However, Cooley and
Lohnes (4) suggested that the model is reasona-
bly robust and tolerates deviations from this
assumption reasonably well. In view of this
fact, no attempt was made to test the equality
of the dispersion matrixes.
An advantage of an identification scheme

based on antibiotic susceptibility is the speed
with which the data can be obtained. The time
between obtaining a pure culture and complet-
ing its identification is about 24 h. Most clinical
laboratories probably determine antibiotic sus-
ceptibility for reasons related to therapy. It
would be economical to be able to utilize these
data in the identification of isolates.
The general procedure for this type of identifi-

cation scheme would be to determine the dis-
criminant function for each group being consid-
ered. One discriminant function is needed for

each species. Once the functions have been de-
termined, they can be suitably stored in the
computer and recalled as needed. An unknown
isolate is then tested on the set of antibiotics
being used. All of the antibiotics must be em-
ployed. An observation vector is thus deter-
mined for the unknown. This vector is used in
the discriminant function to achieve an identifi-
cation. Not only is an identification obtained,
information regarding the reliability ofthe clas-
sification is also given. Although only eight
taxa were considered in this paper, there is
little difficulty extending the approach to as
many groups as desired.
Although E. coli could not be distinguished

from Shigella by the use of discriminant func-
tions, 82% of the rather limited number of orga-
nisms with which it was confronted were cor-
rectly identified. If E. coli and Shigella are
considered as a single group, as suggested by
deoxyribonucleic acid homology (3), 94% (31/33)
of the isolates were correctly identified. This is
a reasonably high degree of accuracy for a pre-
sumptive test. The accuracy may be increased
in several ways. First, the covariance matrix
can be weighted so that the prior probability of
isolating a particular species is considered. Sev-
eral rapid biochemical tests may also be in-
cluded to increase resolution between such spe-
cies as E. coli and Shigella. Finally, although
the zone of inhibition is used as the indicator of
antibiotic susceptibility in the model, it may be
better to consider the minimum inhibitory con-
centration.
A satisfactory computer model for identifica-

tion must be capable of identifying atypical
isolates as well as "typical" individuals. In this
case, the unusual isolates would be represented
by the multiply resistant strains. In the above
model a multiply resistant isolate may be con-
sidered in two ways. First, the use of minimum
inhibitory concentrations could help determine
differences between "resistant" isolates. Sec-
ond, if zone sizes are to be used, it may be
possible to define a group that contains multi-
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ply resistant isolates regardless of the taxa to
which they actually belong. Isolates classified
in this group could then be analyzed independ-
ently. Preliminary studies have tended to sup-
port this approach. It does, however, suffer
from the disadvantage of requiring two sepa-
rate analyses.

In conclusion, a systematic analysis of anti-
biotic susceptibility data, as described, would
greatly facilitate presumptive identification of
clinical isolates. Since such information is al-
ready being used, although often intuitively,
some attempt should be made to objectively
analyze these data. The advantages of using
antibiotic susceptibility data to identify micro-
organisms are obvious, and with the growing
tendency toward centralized data processing
the analytical chore is not overwhelming.
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