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Introduction

This is supplementary material to Section 5 that describes the application.

Section A discusses the model comparison that led to the choice of Model 1

and Model 2. Section B describes the sensitivity analyses. In Section C, we

present the ANOVA that was used to check the micro-simulation for Model

1. Section D describes the details of the Bayesian χ2 test. Even though this

test cannot be used for the data at hand, it might still be of interest to other

applications.
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A Model selection

For t the number of years since baseline, we consider specifications of a model

that describes the baseline state and the transition intensities. For individual

i, the model is given by

logit(θi) = α0 + αaAgei(0) + αsSexi + αdDurationi

log[qi
rs(t)] = β0.rs + βa.rsAgei(t) + βs.rsSexi + βd.rsDurationi + τ i

rs(t)

τ i
rs(t) = γi

0.rs + γi
a.rsAgei(t)

γi = (γi
0.12, γ

i
0.13, γ

i
0.23, γ

i
a.12, γ

i
a.13, γ

i
a.23)

> ∼ MV N(0,Σ).

Table 1 presents the models that are considered, where Model 1 and Model

2 are the models that are discussed in the paper. The order of the models in

the table is not a ranking. In order to take the time-dependency into account,

age was always included as a covariate for the intensities. We started the

model comparison with the fixed-effect model, i.e., Model 3. This model has

DIC = 4145, but some of the parameters are weakly identified: β0.13 and βs.13

have large 95% credible intervals and an almost perfect posterior correlation

of -0.98. This means that with the data at hand it is not possible to identify

the effect of sex on the transition from state 1 to death. Restricting βs.13 to

zero whilst leaving the rest of the model unchanged, yields Model 4 with DIC

= 4145. Possible further restrictions on covariate effects are indicated by 95%
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Table 1: Models for the Norwegian study of Parkinson’s patients.

Parameter restrictions DIC
Model 1 βs.13 = βd.13 = βd.23 = αs = 0 4142

τ i
rs(t) = 0

Model 2 βs.13 = βd.13 = βd.23 = αs = 0 4142
γi

a.12 = γi
a.13 = γi

a.23 = γi
a

Model 3 τ i
rs(t) = 0 4145

Model 4 τ i
rs(t) = 0, βs.13 = 0 4145

Model 5 βs.13 = βd.13 = βd.23 = αs = 0 4141

Model 6 βs.13 = βd.13 = βd.23 = αs = 0 4139
γi

a.12 = γi
a.13 = γi

a.23 = 0

Model 7 βs.13 = βd.13 = βd.23 = αs = 0 4144
γi

a.12 = γi
a.13 = γi

a.23 = 0
γi

0.12 = γi
0.13 = γi

0.23 = γi

credible intervals that include zero. Model 1 is the model with restrictions

βs.13 = βd.13 = βd.23 = αs = 0. This model has DIC = 4142. The restrictions

yield a more parsimonious model and a smaller DIC.

Next we investigate whether the addition of random effects leads to a

better model. In Model 5, the restrictions on the fixed effects are maintained,

but there are no restrictions on the random effects structure. This model has

DIC = 4141. Looking at the posterior means of Model 5, it seems reasonable

to use the restriction γi
a.12 = γi

a.13 = γi
a.23 = γi

a, i.e., one random slope for all

three transitions. This is Model 2 and it has DIC = 4142. Model 6 is the

model without the random slopes and has DIC = 4139. Model 7 is a shared

random effect model. This model assumes that random effect γi describes a

general susceptibility to ill-health which affects all three possible transitions.

3



This model has DIC = 4144.

DICs of the models are close. Model 1 is the most parsimonious, but

we think that Model 2 is interesting as it includes random effects to capture

possible heterogeneity not captured by the covariates and it allows random

effects to change over time by regressing the effects on time-dependent age.

Assuming that random effects do not change over time is a strong assumption

and in that sense Model 1 and Model 6 might be too restrictive.

B Sensitivity Analysis

For the fixed effects in Model 1, we specified alternative univariate normal

distributions with mean zero and variance equal to either 100 or 10000. For

both these choices of variance the DIC stays 4142 and the prior means of

the effects are very similar to the means given the previous priors for Model

1. We can conclude that Model 1 is robust regarding specifications of vague

priors.

For Model 2, we investigate alternative priors for the precision matrix T .

Denote the diagonal entries of R for the random intercepts r1 and the diag-

onal entries for the random slopes r2. The DICs varied slightly for different

specifications: for (r1, r2) = (1, 0.001), DIC = 4140, for (r1, r2) = (2, 0.01),

DIC = 4140, and for (r1, r2) = (0.25, 0.001), DIC = 4143. We do not consider

this variation to be significant. Again, estimation of fixed effect was robust

across the specifications. The estimation of Σ22, that is the variance of the
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distribution for the random intercept for the transition from state 1 to state

3, increases slightly for larger r1. For (r1, r2) = (1, 0.01), the posterior mean

is 0.75 with 95% CI (0.349, 1.583), for (r1, r2) = (2, 0.01), the posterior mean

is 1.07 with CI (0.478, 2.665). We prefer the specification (r1, r2) = (1, 0.01)

for the prior as this reflects a sensible range for the random effects.

For Model 7, we used a half-normal distribution as the prior for the

variance of the shared random effect σ. Choosing the variance of this half-

normal equal to 0.5 leads to a posterior mean of σ equal to 0.16. We specified

alternative priors using the half-normal with variance equal to 1 and equal

to 2. Although the posterior mean of σ varied (0.20 and 0.16, respectively),

the DIC stayed the same and the estimation of the fixed effects was very

similar. Another alternative prior for the variance of a random effect can

be formulated using the Gamma distribution. We specified a prior for the

precision by using the Gamma distribution with parameters (0.01, 0.01) and

(0.001, 0.001). Results for DIC and the posterior mean of σ were 4144 and

4143, and 0.19 and 0.13, respectively. Again, estimation of the fixed effects

was very similar.

C ANOVA for the micro-simulation

Using the one-way analysis of variance technique proposed by O’Hagan and

others (2007), we checked results by comparing estimated standard errors.
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Within-individuals and between-individuals sums of squares are defined by

Swithin =
B∑

b=1

C∑
c=1

(Lc
b − Lb)

2 and Sbetween = C

B∑

b=1

(Lb − L)2.

And the estimator of the second-order uncertainty is

vA =
1

C

(
Sbetween
B − 1

− Swithin
B(C − 1)

)
,

where the definition of B, C, Lc
b, and Lb are given in Section 3. As explained

in Section 3, the second-order uncertainty can also be estimated using stored

sample means L
c

b and variances V c
b . Let vM denote this second estimator.

The uncertainty is overestimated by vM if C is not large enough. The bias

arises because variability in the Lb inflates their variance, over and above

the variability of the true means that is represented by the second-order

uncertainty (O’Hagan and others, 2007). Comparison of standard errors

√
vA and

√
vM is used to assess the bias in vM and hence the bias in the

approximation of the posterior of L. For Model 1 and the life expectancies

reported in the paper, the standard errors are given for both the ANOVA

and the micro-simulation in Table 2. The figures in the table show that for

C = 1000 there is indeed some consistent overestimation, but that the bias

is negligible for practical purposes.
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Table 2: ANOVA standard errors (
√

vA) and standard errors directly from
the micro-simulation (

√
vM) for the estimated life expectancies (LEs) for men

aged 60 and 70 with eight years of Parkinson’s disease at baseline (Model 1).

For LEs men aged 60 For LEs men aged 70√
vM

√
vA

√
vM

√
vA

e11 0.907 0.888 0.493 0.478
e12 0.511 0.497 0.353 0.338
e21 1.037 1.028 0.496 0.483
e1 0.890 0.871 0.457 0.444
e2 0.520 0.506 0.356 0.344

etot 0.947 0.925 0.526 0.508

D Bayesian χ2 test for validation

Bayesian χ2 test for discrete random variables (Johnson, 2004, p. 2366) could

be applied using a χ2 test that is a sum of a series of χ2 tests. Observation

times other than death, take place at years t0, t1, ..., t6 = 0, 4, 8, 9, 10, 12. For

example, for t1 we have a discrete distribution for individuals in state 1 at

t0 with sample space state 1, 2 and 3, and we have a discrete distribution

for individuals in state 2 at t0 with sample space states 2 and 3. This would

induce two χ2 tests. In total, for t1, ..., t6, there would be 6 × 2 = 12 χ2

tests with a total sum of 18 degrees of freedom. But as can be seen from the

observed frequencies reported in the paper, data are sparse for the later time

points regarding individuals previously observed in state 1. Collapsing the

cells for state 2 and state 3 for t3, t4, t5 and t6 regarding individuals previously

observed in state 1, would bring the degrees of freedom down to 14. However,

the quantile-quantile plot (not reported) of the statistic shows considerable
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deviation from the 45-degree reference line. The test cannot be used in our

situation. This is not a complete surprise as the definition of the test relies

on asymptotic properties regarding sample size and number of bins - both of

which are not met in our situation.
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