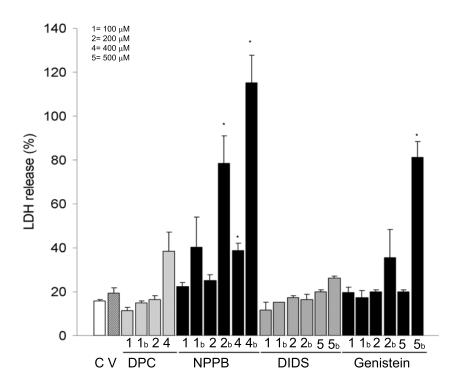
CFTR Regulation of Intracellular pH and Ceramides Is Required for Lung Endothelial Cell Apoptosis


Julie Noe¹, Daniela Petrusca², Natalia Rush², Ping Deng³, Mary VanDemark², Evgeny Berdyshev⁴, Yuan Gu², Patricia Smith², Kelly Schweitzer², Joseph Pilewsky⁶, Viswanathan Natarajan⁵, Zao Xu³, Alexander G. Obukhov⁴, and Irina Petrache²

¹Section of Pulmonology and Critical Care, Department of Pediatrics, ²Division of Pulmonary, Allergy, Critical Care and Occupational Medicine, ³Department of Anatomy, and ⁴Department of Cellular and Integrative Physiology, Indiana University; ⁵Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois; and ⁶Division of Pulmonary, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

Online Data Supplement

Figure E1. LDH release from untreated (C) mouse lung endothelial cells, and from cells treated with vehicle (V) or the indicated concentrations of specific CFTR inhibitors (DPC and NPPB), non-CFTR Cl⁻ channel inhibitor DIDS, and CFTR activator genistein. The duration of treatment was 30 min or 16 h (the latter noted as subscript b) The LDH released was expressed as % of maximal LDH released from lysed cells (mean +/- SEM; n=3; * p<0.05 versus vehicle).

Supplementary Figure 1.

