
Mathemathical details of the probabilistic models gMOS and 
mgMOS 

 

gamma Model for Oligonucleotide Signal (gMOS) 

 

gMOS reflects the fact that both the perfect match (PM) and mismatch (MM) 

intensities are positive and makes an assumption that the estimated gene 

expression signal is constrained to be positive. The model also assumes that PM 

and MM are independently sampled and therefore they are drawn from two 

independent probability distributions. PM is represented by a random variable y, 

m is a random variable representing MM and s is the random variable 

representing the gene expression signal. The variables in the model are ijy , ijm  

and ijs  with i=1,…,nj and j=1,…,N, where nj is the number of probe pairs in the   

jth probe set and N is the total number of probe sets on the chip. Under the 

above hypothesis of positive definition of the variables, if m and s are gamma 

distributed with shape parameters a and   respectively and same scale 

parameter b, their sum is still a gamma distributed variable with shape parameter 

a and scale parameter b. Therefore, if ),(~ jjij baGammam , 

),(~ jjjij baGammay  , ),(~ jjij bGammas   and we can derive the following 

probabilities: 
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where )( is the gamma function. To define the distributions we need to estimate 

the parameters jj a,  and bj. For this purpose, we derived the joint log-likelihood 

function, ),(),(),,( jjjjjjjj baLbaLbaL   , where 
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maximize it with respect to the parameters jj a,  and bj. To solve this 

optimization problem we used the scaled conjugate gradient algorithm (1). Once 

the parameters are estimated we can calculate the expected probe signal  js  

and the associated precision 2/1 j  as mean and variance, respectively, of the 

gamma distributed variable s. They are respectively: 
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In our experiments we used the log of the gene expression signals and therefore 

we calculated the expected value and the variance of the transformed variable 

log(s). They can be defined as )ln()()log( jjj bs    and )('2

)log( js j
  , 
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Modified gamma Model for Oligonucleotide Signal (mgMOS) 

 

In modified gMOS (mgMOS) the assumption that the PM and MM intensities are 

positive and the signal is constrained to be positive is still in place but the PM 

and MM are no longer assumed to be independently sampled. In mgMOS we aim 



to model the correlation that is empirically observed between PM and MM. This 

correlation is particularly strong for probes with relative low signal. Under the 

above assumptions the variables y and m are drawn from a joint probability 

function and no longer from two independent distributions. Thus we have  

),( ijij myp ijijijjijijjjji dbbpbampbayp )(),|(),,|(   

where ),(~ jjij dcGammab . The parameters bij reflect the different binding affinity of 

probes within the probe set. In the original model gMOS the binding affinity is 

assumed not to vary within the probe set and therefore the model does not take 

into account the effect on the Gene Specific Binding (GSB) signal of the 

homomeric base change in the MM probes (2). The new model mgMOS, 

instead, is designed to capture this effect by introducing an additional level of 

complexity on the parameter b. To model the BA as varying within the probe set 

mgMOS allows the parameter b to assume different values for each probe pair 

and b is therefore drawn from a probability distribution that influences the 

estimation of the signal s. If this probability distribution is a gamma distribution, 

as are the probability distributions of y and m, then the integral in the above 

equation is tractable and the estimate of s can be computed analytically. Thus, 

the resulting distribution of the gene expression signal s, given the above 

constraints, has the following form: 
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The parameters jj a, , cj and dj are estimated, as for the gMOS model, by 

maximizing the log likelihood function )),(log(),,,( ij

i

ijjjjj mypdcaL   using a 



scaled conjugate gradient algorithm. A disadvantage of the mgMOS approach is 

that the log likelihood is no longer unimodal with respect to the parameters (as it 

was for the gMOS algorithm). In our experiments we always initialised the model 

by setting  jj a  cj = dj =1. The expected probe signal and its variance are 

respectively given by:  
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Similarly we can calculate the expected value and the variance of the 

transformed variable log(s). They are respectively defined as 

)log()()()log( jjjj dcs    and )(')('2

)log( jjs c
j

  . In both gMOS 

and mgMOS it is possible to derive the posterior distribution of the parameters i  

as an approximation by a Gaussian distribution whose mean corresponds to a 

Maximum A posteriori (MAP) estimate under an uniform prior on i and the 

variance corresponds to the curvature of the log-likelihood L as function of i . 

The MAP estimate and the curvature are evaluated for the Maximum Likelihood 

estimates of the parameters. 
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