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Table 1: The list of reaction kinetics for all nodes in the dynamic integrated model linking protein aggregation and proteasomal degradation 
of substrate proteins and its inhibition, mitochondrial dysfunction and GSH synthesis/metabolism.  
1) Protein aggregation and proteasomal degradation    

(a) Protein aggregation and Lewy body formation    

NODE Equation Parameters (units) Mechanism and 
assumption Reference(s) 

Seed formation (control α-syn) syn_control --> seeds  Kf = 1.2E-6 (1/sec) 

Irreversible mass action. 
Here during aggregation of 
a-syn a condition is given 
that aggregation will occur 
when concentration of A-
Syn <= 8uM  

[3,7] 

Seed formation (WT α-syn) syn_WT --> seeds Kf =4.4E-2 (1/sec) Irreversible mass action. [1,2,4] 

Seed formation (A53T α-syn) syn_A53T --> Seeds Kf = 8.79E-2 (1/sec) 

Irreversible mass action. 
Assumed as the kinetics of 
Mutant A-syn aggregation 
is 2 fold higher than WT. 

[1,2,4] 

Seeds oligomerization  Seeds --> Oligomers Kf = 3.9E-6 (1/sec) Irreversible mass action. [3,7] 

Protofibril formation (oligomer 
polymerization) Oligomers --> Protofibrils Kf = 9.5E-7 (1/sec) Irreversible mass action. [3,7] 

syn-agg Formation (Protofibril 
oligomerization) Protofibrils --> synagg Kf = 1E-4 (1/sec) Irreversible mass action. [3,7] 



Lewy body formation (syn-agg 
polymerization) syn-agg --> Lewy body Kf = 8.35E-6 (1/sec) Irreversible mass action. [3,7] 

(b) Proteasomal degradation and its inhibition by aggregates or exogenous inhibitor (PI) 

Protein Degradation  Proteins (a- syn/ synphilin 
/ Pael-R) --> Sink 

Kcatf_proteasome = 0.5 
(μmol/sec)                         
Km_protein = 5μM           
Ki_toxic aggregates = 
0.001 μM    
Ki_PI = 1μM 

Michaelis menten kinetics.  
1. Sink is shown for the 
degradation of protein  
2. Toxic aggregates (which 
comprise intermediates of 
aggregation namely, 
oligomers, protofibrils, 
synagg and their dopamine 
adducts ) are shown to 
inhibit the proteasomal 
degradation. 
3. Proteasoamal activity is 
modeled as michelis-
menten kinetics. 

[8,9] 

2) Mitochondrial Bioenergetics and Dysfunction    

Electron transport chain-NADH oxidation 

(a) CI + NADH  --> 
CIbnnd + NAD               
(b) 3Hplus + UQ + CIbnd 
= 3 Hplus + Uqbnd + CI 

(a)Km_CI= 0.3 μM, 
Km_NADH= 300 μM, 
Vf=7.5E-2 (μm/sec)          
(b) Vf = 8.5 E-2(μm/sec), 
Km_CIbnd = 0.15 μM, 
Km_UQ= 1.5 E-1 
Ki_Toxic_Aggregate = 
3.33E-6 μM  
Ki_PN = 7E-3 μM 

Coupled reactions. Both 
reactions are modified  
Michelis-Menten 
equations. 

[10-18] 

ROS production coupled with CI oxidation CIbnd + O2Mt --> CI + 
ROSmt 

Kf= 5E-5 
((Liter/μM)*(1/sec))          

Irreversible mass action 
activated by ROS. This [12,21-24] 



Kact_ROS_C1 = 0.1 μM reaction remains coupled 
with CI reduction. 
Mitocondria produces SO 
and primary ROS at two 
complexes I and III .CI and 
CIII produces SO on the 
matrix side of membrane. 

CIII reduction coupled with UQ oxidation. UQbnd + CIII  --> UQ + 
CIIIbnd 

Vf = 0.1 (μm/sec), 
Km_UQbnd = 0.15 (μM), 
Km_C3 = 0.15 (μM) 

Modified Michaelis-
Menten reaction. [13-16,19,20] 

CIII oxidation coupled with ROS 
production. 

C3bnd + O2Mt  --> CIII + 
ROSmt 

Kf= 5E-5 
((Liter/μM)*(1/sec))          
Kact_ROS_C3 = 0.1 μM 

Irreversible mass action 
activated by ROS. This 
reaction remains coupled 
with CIII reduction. 
Mitochondria produces SO 
and primary ROS at two 
complexes I and III .CI and 
CIII produces SO on the 
matrix side of membrane. 

[12,21-24] 

UQ oxidation coupled with cytochrome C 
(CYCSi) reduction (During the process of 
electron flow, each complexes catalyzes the 
translocation of protons across inner 
membrane). 

CIIIbnd + 3 
Mtmatrix.Hplusi + CYCSi  
--> CYCSbnd + 3 
IMS.Hpluso + CIII 

Vf = 0.1 (μm/sec), 
Km_CIIIbnd = 0.15 (μM) 
Km_CYCSi = 0.15 (μM)  
Ki_PN = 0.007 (μM)  

Modified Michaelis-
Menten reaction. During 
the process of electron 
flow, each complex 
catalyzes the translocation 
of protons across IM. 

[13-16,20] 



CIV reduction coupled with cytochrome C 
Oxidation  

CYCSbnd + CIV --> 
CYCSi + CIVbnd 

Vf = 0.1 (μm/sec), 
Km_CYCSbnd = 0.15 
(μM)  
Km_C4 = 0.15 (μM) 

Modified Michaelis-
Menten reaction. During 
the process of electron 
flow, each complex 
catalyzes the translocation 
of protons across IM. 

[13-16,20} 

CIV oxidation coupled with ROS 
production  

O2Mt + CIVbnd  --> CIV + 
ROSmt 

Kf= 5E-5 
((Liter/μM)*(1/sec))          
Kact_ROS_C3 = 0.1 μM 

Irreversible mass action. [12,21-24] 

H2O Formation coupled with CIV 
oxidation. 

CIVbnd + 5 
Mtmatrix.Hplusi + 
Mtmatrix.O2Mt  --> CIV + 
3 IMS.Hpluso + 
Mtmatrix.H2Omt 

Vf = 1.25 E-1 (μmol/sec), 
Km_CIVbnd = 0.15 μM, 
Ki_NO = 20 μM 
Ki_PN = 0.007 μm.   

Modified Michaelis-
Menten. [13-16,20} 

(3) GSH Biosynthesis and metabolism (including GCL mRNA transcription) 

Glutathione synthesis 
Step 1-  mediated by γ-GCL  

Glut + Cys + ATPcyto  --> 
GluCys + ADPcyto + Pi 

Kcatf_GCL = 7.344 1/sec
Km_Glut = 3600 μM, 
Km_Cys = 100 μM, 
Km_ATPcyto = 400 μM, 
Ki_GSH = 500 μM. 

Modified Michaelis-
Menten kinetics with 
product inhibition by GSH.

[28-32] 

Glutathione synthesis 
Step 2- mediated by GS (glutathione 
synthetase) 

GluCys + Gly + ATPcyto  -
-> Pi + ADPcyto + GSH 

Kcatf_GS = 4.9 E-1, 
Km_ATPcyto = 4.5 μM, 
Km_Gly = 2000 μM. 

This is modeled as 
modified Michaelis-
Menten reaction. 

[29,30,33,34] 



GPx – Glutathione Peroxidase H2O2 + GSH  --> H2Oc + 
GSSG 

Kcatf_GPx = 21 (1/sec), 
Km_GSH= 3000 μM, 
Km_H2O2 = 10 μM 

This reaction is modeled as 
two substrate Michaelis-
Menten mechanism 

Values from 
Brenda and 
optimized [EC 
no. 1.11.1.9] 

GR – Glutathione Reductase 

GSSG + NADPH  --> GSH 
+ NADP 

Kcatf_GR = 100 1/sec, 
Km_NADPH = 85 μM, 
Km_GSSG = 65 μm.  

This reaction is modeled as 
two substrate Michaelis-
Menten mechanism 

Values from 
Brenda and 
optimized [EC 
no. 1.8.1.7] 

S-Nitroso-glutathione 
formation 

(a) GSH + ONOO --> 
GSNO                               
(b) GSHc + N2O3  --> 
GSNOc + Hplus + NO2 

(a) Kf = 3 E-4 (1/sec)   
(b) Kf = 1E-5 (1/sec) 

Irreversible mass action.  [35,36] 

GCL upregulation    

Keap1_Nrf2 complex dissociation 

Keap1_Nrf2 --> Keap1 + 
Nrf2c 

Vf = 0.01 1/sec, 
km_Keap1_Nrf2 = 50 
μM 
Ka = 2 E-6 uM 

Modified Michaelis 
Menten which is activated 
by ROS/electrophile stress 

[38- 44] 

Nrf2 translocation Nrf2c  --> Nrf2n Kf = 1.0E-5 (1/sec) Irreversible mass action.  [38-40] 

EpRE complex formation 

Nrf2n + JUNn + EpRE  --> 
EpRE_Nrf2_JunD 

Kf = .01 μM 
Kr = .008 μM 

The binding of  Nrf2  in 
nucleus    to form EpRE 
complex  is  modeled with 
reversible mass action 
kinetics. 

[38-40] 

Transcription of γ- GCL gene induced by 
EpRE Transcription factor . 

DNA  --> GCL mRNA Km_EpRE_Nrf2_JunD = 
19 μM 
Vf = 0.0082 μmol/sec  

This reaction is modeled as 
modified Michaelis-
Menten mechanism. 

[38-40] 



Phosphorylation of Jun by JNK in the 
FosJun complex formation 

FOSpn_JUNn  --> 
FOSpnJUNpn 

Kcatf_JNK = 25 (1/sec), 
Km_FosPn_JunN = 10 
μM 

This reaction is modeled as 
modified Michaelis-
Menten mechanism. 

[37-40] 

Transcription of γ- GCL gene induced by 
AP1 Transcription factor. 

DNA --> GCL mRNA V max = 0.004 μmol/sec
Km_ FOSpn_JUNn = 19 
μM 

This reaction is modeled as 
Michaelis-Menten 
mechanism. 

[41-43] 

Translation of GCL enzyme GCLmRNAc  --> GCL Kf =3.5E-2 (1/sec) The reaction is modeled 
with mass action kinetics. 

[41-43] 

Inhibition of proteasomal degradation of 
Nrf2 by toxic Aggregates. 

Nrf2c  --> Sink Kcatf_proteasome = 0.01 
(1/sec)    
Km_Nrf2c =  μm               
Ki_Toxic aggregate = 1E-
5 μM     
Ki_PI = 1 μM 

This reaction is modeled as 
Modified Michaelis-
Menten.  

[8,40-45] 



List of abbreviations: 
CI – NADH Oxidoreductase (Complex I of Electron Transport Chain) 
CIbnd – Electron bound CI 
CIII – Cytochrome c Oxidase (Complex III of Electron Transport Chain) 
CIIIbnd- Electron bound CIII 
CIV- Cytochrome c Reductase (Complex IV of Electron Transport Chain) 
CIVbnd- Electron bound CIV 
UQ – Ubiquinone 
Cytc – Cytochrome c 
UQbnd - Electron bound Ubiquinone  
cytcbnd - Electron bound Cytochrome c 
ATP – Adenosine triphosphate 
ADP – Adenosine diphosphate 
Pi – Inorganic phosphate 
NADP – Nicotinamide adenosine diphosphate 
Arg – Arginine 
Cit- Citrulline 
NO -Nitric oxide 
O2 – Oxygen 
ROS – Superoxide 
H2O2 – Hydrogen peroxide 
PN – Peroxynitrite 
NO2 – Nitrogen dioxide radical 
DOPAL – Metabolite of dopamine 
GSH – Glutathione 
GSSG – Glutathione disulphide 
GR – Glutathione reductase 
GPx – Glutathione peroxidase 
SOD – Super oxide dismutase 
MAO– Monoamine oxidase 
XO– Xanthine oxidase 



NOS – Nitric oxide synthase 
Gly – Glycine 
GluCys -GlutamylCysteine 
Cys – Cysteine 
Glu – Glutamate 
GSNO – S- Nitrosoglutathione 
NO2R – Nitrogen Dioxide radicals 
N2O2- Anhydrous nitrous acid 
ONOOH - Peroxinitirous acid 
Hplusi – Proton concentration in mitochondrial matrix 
Hpluso -  Proton concentration in mitochondrial membrane space. 
FOSpn_JUNn – With Phosphorylated FOS in AP 1 complex. 
FOSpnJUNpn – Activated AP1 
DNA – Deoxyribonucleic acid. 
GCL mRNA – mRNA for GCL 
γ-GCL – Gamma glutamylcysteine ligase 
Nrf2c – Component of EpRE transcription factor in the cytosol. 
Keap1 -A cytoskeleton binding protein 
Keap1_Nrf2 - Inactive  Nrf2 bound with Keap1 
Nrf2n -Component of EpRE transcription factor in the nucleus. 
JUNn - Nuclear JUN protein 
EpRE  - Electrophile Response Element or ARE 
EpRE_Nrf2_JunD -Electrophile Response Element or ARE bound with JunD and Nrf2 to form an active Transcription factor 
AP1- Activator Protein 1 - Activator protein 1 complex 
Parameters: 
Kf = Forward rate constant 
Kcat = Catalytic rate constant 
V max = The maximum rate of reaction 
Km = Michaelis Menten constant 
Ka = Activation constant 
Ki = Inhibition constant 
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