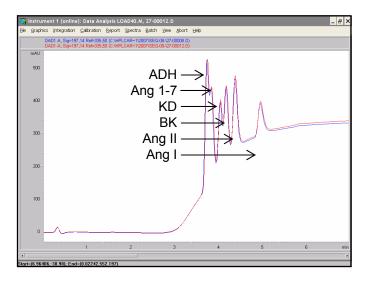

Suppl Table 1

	M+H+	MS ¹	MS ²
	measured	m/z	m/z
ADH	1085.8	542.9	534.3
Ang I	1297.8	649.4	784.4
Ang II	1048.0	524.2	784.4
Ang 1-7	899.7	450.5	784.4
KD	1189.1	595.3	904.4
ВК	1060.6	531.2	522.3
BK 1-8	905.2	453.0	642.3
BK 2-9	905.7	453.0	807.4


Supplementary Table 1 | MS parameters for the peptides analyzed in this study. The measured mass value (M+H+) of each peptide was provided by the supplier (AnaSpec; San Jose, CA). The MS¹ values are the predominant parent ion determined by us under the conditions used in these studies. The MS² values listed are those used to generate extracted ion chromatograms and signal intensity analyses.

Suppl. Fig 1

Suppl. Fig 2

Supplementary Figure 2 | Offline HPLC fractionation of vasoactive peptides. A chromatogram showing the elution of peptides from a standard mix (10⁻⁶M) using diode array UV detection. Establishing the elution times enabled the collection of endogenous low abundance peptides from plasma and standards for LC-MS analysis. Chromatographic resolution of each peptide was forgone to enable collection of peptides of interest in a single low volume fraction.

SUPPLEMENTARY DATA:

{Insert Suppl Table, Suppl fig 1 & 2}

- Agilent XCT Ultra ion trap MS parameters:

Mass Range Mode	Ultra scan	
Ion Polarity	Positive	
Ion Source Type	Chip ESI	
Dry Temp	325°C	
Nebulizer	2.0 PSI	
Dry Gas	5.0 l/min	
Trap Drive	85.0	
Octopole RF Amp	108.9 Vpp	
Capillary Exit	99.0 V	
Skimmer	30.0 V	
Oct 1 DC	12.0 V	
Oct 2 DC	1.7 V	
Scan Begin	400 m/z	
Scan End	950 M/z	
Averages	1 spectra	
Max Accu time	0.5 sec	
(smart) ICC Target	0.5 x 10 ⁶	
ICC	on	

SUPPLEMENTARY METHODS:

Additional details describing the preparation of standards and samples are listed according to the figures presented for each experiment.

Figure 2; A frozen aliquot of pure peptide $[10^{-6}M]$ was diluted 10x with water. Two vial inserts received either 2 or 20 µl of peptide and were diluted with water to a final volume of 200 µl. Replicate serial injections of 0.01, 0.1, 1.0 µl from each vial were analyzed.

Figure 3; A mix of peptides was prepared in a LB vial by adding 10 μ l of each peptide aliquot stock and diluting with water to a final volume of 1.0 ml [10⁻⁸M]. 20 μ l was transferred to a PP vial insert diluted 10x for replicate injections of 1.0 μ l.

Figure 4; An equal volume of methanol and thawed plasma (200 μ l vol:vol) was mixed and refrigerated overnight at 4°C in a LB vial. After centrifugation to separate denatured protein, 300 μ l of supernatant was subject to 10k MW cutoff spin filtration. Aliquots of the filtrate (100 μ l) were transferred to PP sample vial inserts for lyophylization +/- addition of a standards mix (10 μ l; 10⁻¹⁰M). Lyophylized samples were reconstituted in 10 μ l water, providing a 5x concentrated extract, replicate injections of 1.0 μ l were analyzed.

Figure 5; A) A peptide standards mix was prepared as described above (1.0 ml; $[10^{-9}M]$). Two separate PP vial inserts received either 2 or 20 µl of the mix and were diluted to a final volume of 200 µl with water before lyophylization. Each was reconstituted to 20 µl with water and repeated graded injections of 0.2, 0.4 & 0.8 µl or 2.0, 4.0 & 8.0 µl ensued. **B)** A [$10^{-8}M$] stock peptide mix was prepared in a LB vial as above. A PP vial insert received 20 µl of the mix and was diluted 10 fold with water. Off-line reverse phase HPLC fractionation was used to process 20 µl of the standards mix. The collected elution fraction (250 µl; directly into PP vial inert) was lyophylized and reconstituted in 20 µl of "eluent A". Replicate, graded injections of 0.2, 0.6 and 0.8 µl were analyzed.

Figure 6; Thawed plasma was spin-filtered (10k MW cutoff) into LB vials and 50 μ l was transferred to a PP vial insert. Off-line HPLC fractionation was used to process 45 μ l of filtered plasma. After Lyophylization, plasma peptides were reconstituted in 4.5 μ l of "eluent A" and replicate 2 μ l injections were analyzed.