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Tables

Supplementary Table S1 - Types of data sets used to train and test SNP classifiers.
The column “Size of data set” refers to the range of the data sets used, i.e. the smallest and largest data sets.

Origin data set Size Number References
of data set of studies

Neutral variations
Mutagenesis studies 111-3706 9 [1–9]
Orthologs 888-16682 3 [3, 9, 10]
SwissProt SNP 502-12944 6 [3, 8, 11–14]
OMIM 558 1 [15]
dbSNP 5177-21471 2 [16,17]
Disease mutations
Mutagenesis studies 159-1750 8 [1–9]
COSMIC database 879 1 [18]
HGMD 3768-10263 1 [9]
OMIM 879-2249 5 [3, 8, 13,15,18]
SwissProt Disease 175-9610 9 [3, 8, 10–14,19,20]
Data from Haluschka et al. [21] 209 1 [20]
Data from Cargill et al. [22] 185 2 [19,20]
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Supplementary Table S2 - Performance of state-of-the-art predictors on representative data sets.
The performance of a few selected tools on SwissProt disease associated mutations and SNP data are shown.
The false positive rate (FPR = 1 - specificity), the true positive rate (TPR = sensitivity) and the Matthews
correlation coefficient (MCC) are shown where available. Although all analyses use the variation data from
the SwissProt knowledge base, the effective size of the data set varies between analyses.

Study Method FPR TPR MCC Size
data set

Bao et al [11] Random Forest 0.3 0.76 0.46 205
Capriotti et al [13] HybridMeth - - 0.46 21185
Karchin et al [14] SVM 0.2 0.81 0.61 3691
Ng & Henikoff [19] SIFT 0.19 0.69 0.50 5333
Wang & Moult [20] Stability 0.3 0.9 0.61 262
Worth et al [16] Combined 0.09 0.32 0.28 9143
Yue & Moult [9] SVM 0.15 0.74 0.59 6077

Supplementary Table S3 - Variation of the performance of SIFT on different data sets.
The false positive rate (FPR = 1 - specificity), the true positive rate (TPR = sensitivity) and the Matthews
correlation coefficient (MCC) are shown where available.

Study Dataset FPR TPR MCC
Bao et al [11] Test set 0.33 0.62 0.29
Saunders et al [8] Human 0.4 0.65 0.25
Ng & Henikoff [7] lac I repressor 0.22 0.57 0.36
Ng & Henikoff [7] HIV 1-protease 0.3 0.88 0.59
Ng & Henikoff [7] T4 lysozyme 0.41 0.72 0.31
Ng & Henikoff [19] SwissProt disease 0.19 0.69 0.50
Worth et al [16] SwissProt + dbSNP 0.41 0.71 0.30
Our evaluation SwissProt 0.79 0.69 -0.12
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Figure S1. Structural coverage of Ensembl non synonymous SNP data. A. Number of SNPs in structures
determined by NMR and X-ray crystallography studies or models of these structures. 11% of all non

synonymous SNPs can be mapped on crystallography structures, and 7% of all SNPs can be modeled on a high-quality X-ray
structure (resolution ≤ 2.5Å). B. Number of SNPs covered by structural data versus the sequence identity

between the query sequence and the structural model. The number of SNPs that can be modeled on X-ray structures
(•) decreases from 15% of all nsSNPs (15685 nsSNPs, 5% sequence identity) to 2.5% (3341) of all SNPs for which the

structure of the wild type sequence has been determined experimentally (100% sequence identity). When only high quality
structures are considered (◦), this amount is reduced by half to 7.4% for a sequence identity of 5% and 1.5% for exact models.
C. Number of SNPs covered by structural data versus the sequence coverage of the wild type sequence. There
are almost no SNPs for which the full length of the protein sequence is covered (100% coverage), but for 80% coverage almost
8000 SNPs can be selected, of which circa 5500 in high quality structures. D. Number of SNPs covered by structural
data versus the length of the alignment between protein sequence and structural model. About a third of the

SNPs that can be modeled are located in a structural alignment that is less than 100 amino acids long, both for models based
on all X-ray structures (•) and based on high resolution structures only (◦).
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Figure S2. ROC curves for classification of disease mutations and neutral variation by using structural properties of the

amino acid substitution site.
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Figure S2 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

properties of the amino acid substitution site.
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Figure S2 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

properties of the amino acid substitution site.
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Figure S3. ROC curves for classification of disease mutations and neutral variation by using structural differences between

the wild type and variant protein.
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Figure S3 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

differences between the wild type and variant protein.
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Figure S3 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

differences between the wild type and variant protein.
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Figure S3 (continued). ROC curves for classification of disease mutations and neutral variation by using structural

differences between the wild type and variant protein.
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