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Supplementary Notes 
 
 
Complexities in evaluating the relationship between protein stability and crystallization 
propensity.   A longstanding strategy to obtain a crystal structure after screening of a mesophilic 
protein has failed is to switch to an orthologous protein from a hyperthermophilic organism 
based on the premise that it will have greater stability and therefore crystallize more readily.  
While this strategy has succeeded in many individual cases, switching to an orthologous protein 
from a different mesophilic organism also yields a crystal structure in many cases.  Therefore, a 
properly controlled study is required to determine whether the hyperthermophile strategy is 
statistically justified and whether hyperthermophilic proteins crystallize significantly more 
avidly than mesophilic homologues. 

 
The hyper-thermostable proteins in our thermal denaturation dataset (12 with Tm’s ≥ 80˚ 

C) come from both mesophilic and thermophilic organisms and yielded crystal structures at a 
higher frequency (67%) than those with melting temperatures between 30 and 80 ˚C (37%) (Fig. 
1).  Logistic regression analyses (summarized in the legend to Fig. 1) suggest that this difference 
is likely to be significant.  However, even if this difference turns out to be reproducible and 
hyper-thermostable proteins do indeed crystallize better, it does not imply that thermodynamic 
stability per se is a mechanistically important parameter influencing crystallization.  There are 
systematic biases in the structural properties of hyperthermophilic proteins which could promote 
crystallization for reasons not directly related to their affect on global thermodynamic stability.  
For example, hyperthermophilic proteins have a significantly higher frequency of cooperative 
salt-bridging / hydrogen-bonding (H-bonding) networks, which alter the balance of offsetting 
enthalpic and entropic forces determining the net change in free energy upon folding1, 2.  By 
immobilizing high entropy sidechains (i.e., lys, arg, and glu), such cooperative interaction 
networks will enable them to participate in crystal packing interaction without further loss of 
entropy.  The sequence analysis results presented in the main body of this paper demonstrate that 
the entropy of surface-exposed sidechains  is a major determinant of protein crystallization 
propensity.  To the extent that hyperthermophilic proteins tend to have reduced surface sidechain 
entropy in the native conformational state, or to have systematic biases in other physical 
properties influencing crystallization (e.g., backbone disorder of solvent-exposed loops), they 
could crystallize more avidly for reasons not directly determined by their global thermodynamic 
stability.  Broader and deeper analyses will be required to achieve a reliable understanding of the 
crystallization properties of hyper-thermostable proteins. 

 
Another widely applied strategy to obtain a crystal structure from an otherwise refractory 

protein is to add a high-affinity ligand, which will thermodynamically stabilize the native 
conformational state of the protein3, or even to add components to the buffer that increase the net 
thermodynamic stability of the protein4, 5.  While both of these strategies improve crystallization 
results for specific proteins, there are also explanations for these results that are not directly 
related to the effects of the additives on global protein stability.  Surface loops involved in ligand 
binding are often partially disordered in the absence of the cognate ligand, which represents a 
general strategy to decouple binding specificity from affinity6. Ligand binding to such sites has 
been demonstrated to reduce the conformational flexibility of the constituent loops in many 
proteins (see Forouhar et al.7 and Wang and Palmer8 for two specific examples of this ubiquitous 
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phenomenon).  Stabilizing salts can similarly bind to and immobilize flexible surface loops.  
Even cosmotropic solutes like glycerol, which inhibit backbone exposure to solvent and thereby 
promote greater compactness9, 10, are likely to reduce the dynamics of surface loops.  Therefore, 
stabilizing ligands and solutes could also promote crystallization based on their effect on surface 
entropy rather than global thermodynamic stability.  Once again, additional analyses will be 
required to clarify their mechanism of action in promoting protein crystallization. 
 
 
Detailed analysis of proteolytic susceptibility data.   While several measures of overall protease 
resistance do not correlate with crystallization outcome, the size of the dominant protected 
fragment shows a significant positive correlation with crystallization success (Supplementary 
Fig. 1).  Strikingly, proteins that were completely digested crystallized essentially as well as 
proteins whose dominant resistant fragment is close to the size of the intact protein, consistent 
with the observation that low stability proteins crystallize well (Fig. 1).  However, proteins 
giving a dominant fragment from 10-40% of the size of the intact protein did not crystallize at all 
in our dataset.  A smaller size should correlate with having a larger number of dynamic loops at 
internal positions in the protein sequence.  The datamining analyses presented in the main text 
show a significant anti-correlation between fraction of predicted disordered residues and 
crystallization success.  Therefore, the experimental observation that the dominant proteolytic 
fragment obtained under these conditions is ≤ 40% the size of the intact protein is likely to 
indicate that disordered internal loops are a barrier to crystallization of a given target. 
 
 
Correlations between sequence parameters and thermodynamics properties.   Our large scale 
experimental analyses allow evaluation of potential correlations between thermodynamic and 
sequence properties of biochemically well behaved proteins (Supplementary Figs. 2-3 and 
Supplementary Table 1).  Notably, our data on primarily bacterial proteins do not support 
Uversky’s conclusion11 that specific combinations of hydrophobicity and net charge reliably 
identify natively unfolded proteins.  Nearly all NESG proteins predicted by this metric to be 
unfolded are observed to be folded, while nearly all the proteins observed to be unfolded are 
predicted by this metric to be folded (Supplementary Fig. 4).  Moreover, mean hydrophobicity 
(GRAVY12 – GRand AVerage of hydropathY) shows little correlation with protein stability in 
our dataset (Supplementary Fig. 10), a controversial issue in previous literature13-15.  Protein Tm 
and ΔGunfolding are strongly and significantly positively correlated (Supplementary Fig. 2).  
Overall protease resistance is marginally correlated with Tm and uncorrelated with ΔGunfolding – 
probably attributable to complexities of the proteolysis process, especially the roles of surface 
loops and progressive destabilization after initial cleavage of the polypeptide backbone.  
Complex correlations between proteolytic susceptibility and protein sequence content are 
described in the legend to Supplementary Figure  1. 
 
 
Crystallization propensity as an intrinsic property of individual proteins.   Proteins failing to 
give a hit in initial crystallization screening can certainly yield a crystal structure if further effort 
is invested in the crystallization process.  Leading strategies to achieve this goal involve adding 
stabilizing ligands and solvents (as described in the first section above in the Supplementary 
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Notes), reengineering the termini of the protein construct, or switching to an orthologous 
proteins from another organism.  All of these strategies directly or indirectly alter the surface 
properties of the protein and are consistent with crystallization propensity being an intrinsic 
property of the protein construct significantly determined by the prevalence of well ordered 
surface epitopes capable of mediating inter-protein packing interactions.  Nonetheless, in many 
cases, manipulation of solution conditions has been used to obtain high quality protein crystals 
from a construct that was refractory to crystallization in initial screening.  Beyond the addition of 
stabilizing ligands, which are likely to directly alter protein surface entropy, McPherson et al. 
have described an elegant solution-centered strategy to promote protein crystallization that 
focuses on the addition of small molecule reagents likely to promote non-covalent protein 
interactions by sticking simultaneously to two protein surfaces across a packing interface16.  
Such small molecules presumably promote strong interaction between surfaces epitopes that are 
not themselves chemically complementary.  Moreover, in many historical cases, simply 
extending the scope of brute-force random crystallization screening has successfully yielded a 
crystal structure.  These results reinforce the obvious conclusion that the solution environment 
plays a critical role in the protein crystallization process and can even be the critical determining 
factor in crystallizing specific proteins.  However, the data presented in Supplementary Figure  5 
demonstrate that the probability of obtaining a crystal structure increases as the number of 
conditions that must be screened before obtaining a crystal hit decreases.  These results 
statistically validate the longstanding dogma among practicing crystallographers that the 
probability of getting a crystal structure is reduced for each screen that has been conducted on a 
protein construct without getting a hit.  Moreover, they demonstrate that crystallization 
propensity can indeed be considered an intrinsic property of a protein construct.  A construct 
refractory to crystallizing can still yield a crystal structure based on brute-force or strategically 
clever manipulation of crystallization conditions.  However, the difficulty in finding a suitable 
crystallization condition and the probability in succeeding in crystal structure determination is 
demonstrated by the data in Supplementary Figure  6 to be a property of the protein construct. 
 
 
Brief explanation of logistic regression and the meaning of “predictive value”.   Logistic 
regression transforms the binary success/failure outcome into a continuous variable, i.e., the log 
of the ratio of success to failure in bins across the range of the independent variable.  Following 
this transformation, it functions equivalently to standard regression procedures.  Although 
logistic regression constrains the predictive effect of the continuous variable to follow a simple 
monotonic functional form, it provides a statistically rigorous estimate of the probability that the 
value of the variable influences outcome.  The different sequence parameters considered in our 
work vary considerably in both their mean magnitudes (from fractional amino acid content to 
protein chain length) and relative ranges.  These variations prevent direct comparison of 
regression slopes to evaluate either mechanistic importance or practical influence determining 
outcome.  However, multiplying the regression slope by the standard deviation of the distribution 
of parameter values in the dataset provides a measure of the predictive value of the parameter.  
This measure (labeled “SD*Slope” in table headings) provides a practical assessment of the 
relative importance of each parameter in influencing outcome by scaling for both its magnitude 
and range of variation. 
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Limitations of the current analysis in detecting the influence of rare amino acids.   The 
fractional content of either trp or his residues shows a strong slope in logistical regression against 
success in crystal structure determination (Fig. 3b), roughly equivalent to the slope observed for 
gly, indicating that these amino acids could potentially have an equivalently strong effect in 
promoting protein crystallization.  However, as opposed to the result for gly, the uncertainty in 
slope for both trp and his is large enough that their positive correlation with crystallization 
success is not statistically significant within our dataset.  The larger uncertainty is attributable to 
their low overall frequency of occurrence compared that of the amino acids showing statistically 
significant correlations (i.e., 1.0% for trp and 2.4% for his vs. 6.8% for gly, as shown in 
Supplementary Table 3).  Therefore, the size of the current dataset limits the ability to reliably 
establish the effects of rare amino acids on protein crystallization propensity.  In this context, it is 
not possible to make reliable inferences from the current analysis concerning the influence of 
cys, his, pro, or trp on protein crystallization propensity.  Note that even the most common amino 
acid pair occurs occur at a lower frequency than individual his residues, meaning that reliable 
quantitation of the effects of more complex sequence epitopes will require a substantially larger 
dataset or an alternative analytical approach (unless their influence on crystallization is 
substantially more powerful than observed for the most strongly correlated individual amino 
acids). 
 
 
Weak anti-correlation of some high entropy sidechains with crystallization propensity.   Arg, 
gln, and met all have high sidechain entropy.  Consistent with our hypothesis regarding the 
inhibitory effect of high entropy surface-exposed sidechains on crystallization propensity, the 
fractional content of each of these residues is anti-correlated with crystallization success (Fig. 3).  
However, these trends are not statistically significant within our dataset.  The failure of met’s 
anti-correlation to be significant is likely to be attributable to its low abundance in proteins, 
especially in surface-exposed positions (Supplementary Table 3).  Given the complex interplay 
of factors influencing protein crystallization, the effects of rare amino acids classes cannot be 
reliably determined from a dataset of the current size.  (See the next section for further 
discussion of this point.)  However, arg and gln occur at high frequencies similar to those of lys 
and glu at predicted exposed sites in the 679 proteins under analysis (Supplementary Table 3), 
and they would likely have given a stronger signal if they had a similarly strong effect in 
opposing successful crystallization.  These observations make it likely that they do not oppose 
crystallization as strongly as lys and glu, residues with similarly high entropy sidechains. 

 
We hypothesize that the weak effect of arg and gln in opposing crystallization in our 

dataset is attributable to the functional groups on their sidechains having a favorable interaction 
tendency that offsets the entropic cost of immobilizing them in crystal packing contacts.  The 
functional groups on both of these amino acids are chemically similar to the most widely used 
protein denaturants.  The positively charged guanidino group in arg differs from the guanidinium 
ion only by the substitution of a single nitrogen-hydrogen bond by a nitrogen-carbon bond, while 
the amide group in gln matches two of the three functional groups in the urea molecule.  The 
well known properties of guanidinium and urea in denaturing proteins establishes that these 
chemical structures interact strongly with proteins in aqueous solutions.  Notably primary amines 

Page 5 of 46 in Supplemental Information 



Price et al.   
Supplemental Information  (continued) 

and small carboxylic acids, compounds are would be most similar to the functional groups in lys 
and glu, do not have similar denaturation effects.  These qualitative chemical observations 
support our inference that the functional groups on arg and gln are likely to have favorable 
interaction tendencies that offset their unfavorable sidechain entropy properties.  This inference 
is further supported by a preliminary analysis of all crystal packing contacts in the PDB which 
shows a high content of arg, gln, and gly in interprotein interfaces (Naumov, Price, Handelman, 
and Hunt, unpublished results). 

 
This reasoning suggests that asn, which shares a functional group with gln but has lower 

sidechain entropy, should be more favorably correlated with crystallization propensity than gln, 
but this trend is not observed in our dataset (Fig. 3).  The failure of asn to correlate more 
positively with crystallization than gln could be attributable to some stereochemical complexity, 
e.g., a strong tendency for its functional group to make intra-protein interactions that limits its 
availability to mediate inter-protein contacts.  More research will be required to understand the 
role of asn in influencing protein crystallization.  This residue was previously observed to 
correlate with overall NESG pipeline success in an analysis of a small portion of the proteins 
considered here that conflated solubility and crystallization effects17.  We assume that this 
previously observed correlation was either attributable to the positive influence of asn on 
solubility or an artifact of the limited size of the dataset used for that analysis. 
 
 
Localization of gly residues promoting successful crystallization.   We used secondary-structure 
prediction by PHD/PROF18 to gain more insight into the structural properties of the predicted 
buried gly residues that promote successful protein crystallization (Supplementary Table 4).  Gly 
predicted to be located in loops greater than 15 residues in length negatively correlate with 
crystallization success, while those predicted to be in other locations positively correlate (i.e., in 
α-helices, β-sheets, loops 1-5 residues in length, and loops 6-15 residues in length).  However, 
the only correlation to be statistically significant in our dataset is with loops 6-15 residues in 
length, where the positively correlated population strongly segregates into the predicted buried 
class (Supplementary Table 4).  This categorization seems inconsistent because loops are 
overwhelmingly surface-localized.  Manual inspection of 50 randomly chosen predicted “buried” 
loop glycines in PDB structures showed that 33 had at least some surface exposure (see 
examples in Supplementary Fig. 14).  Two others were actually buried in an interprotein packing 
interface.   
 

This effect could be attributable to several different factors.  For the proteins in our 
dataset yielding structures, we explicitly checked the accuracy of the surface exposure 
predictions by comparison to the values calculated by DSSP19, the program that generated the 
surface-exposure data used to train PHD/PROF18.  The accuracy of the predictions were slightly 
worse for gly than other amino acids but consistent with the published rates above 70%.  
However, our qualitative visual analyses included backbone atoms, while the DSSP surface 
exposure metric was optimized to analyze exposure of the amino acid sidechain.  The fact that 
gly has no sidechain could account for complex behavior in classifying it as exposed or buried.  
However, PHD/PROF20 was trained on the asymmetric units of crystal structures, in which 
residues mediating crystal packing contacts will have some tendency to be buried in the 
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interfaces between non-crystallographic symmetry mates.  Therefore, it is possible that 
PHD/PROF could have a bias leading to surface-exposed residues preferentially mediating 
interprotein contacts being categorized as buried.  In this context, we note that predicted buried 
phe residues correlate positively with successful crystallization, even though predicted exposed 
phe residues correlate more strongly.  This highly hydrophobic and relatively low entropy 
residue seems likely to preferentially mediate crystal-packing contacts when in a surface-
exposed location.  The positive correlation observed for the predicted buried population suggests 
that there may also be some bias in classifying certain phe residues.  Finally, the results 
presented below using genomic distributions to evaluate parameters correlated with successful 
crystal structure determination of human proteins, several additional predicted buried residue 
populations are positively correlated with successful crystal structure determination 
(Supplementary Fig. 20).  Additional investigations will be required to determine whether 
PHD/PROF has a systematic tendency to classify residues mediating crystal packing contacts as 
buried. 
 
 
Analyses of crystallization propensity in whole proteomes. To evaluate the generalizability of 
PXS and explore the interplay between potentially conflicting factors influencing successive steps 
in the structure determination process, all non-redundant sequences from the human or E. coli 
proteomes were analyzed, excluding those predicted to have a signal peptide or transmembrane 
α-helix.  Identical filtering methods were applied to the sequences of protein constructs from 
those organisms that have yielded crystal structures deposited into the PDB, and logistic 
regressions were performed comparing parameter values in this “In-PDB” set to the 
corresponding proteome. 
 

With one notable exception (described in the next section), the individual parameter 
trends observed in the NESG training and validation datasets are recapitulated in these empirical 
proteome-wide datasets, with most being statistically significant but reduced in strength 
(Supplementary Figs. 16-18).  Notably, PXS values from the set of successfully crystallized 
sequences are significantly higher than those from the corresponding proteome (Supplementary 
Fig. 16), indicating that the metric has some predictive value for genomic sequences in spite of 
the complexities cited above.  The weaker predictive strengths of the metric and the underlying 
sequence parameters are likely to derive at least in part from offsetting influences of some 
parameters on protein solubility vs. crystallization (unpublished results).  Several parameters 
opposing successful crystallization are known to enhance protein solubility (fractions of lys and 
glu), while one that promotes successful crystallization is known to cause severe solubility 
problems in some proteins21 (fraction phe). 
 
Human but not bacterial proteins contain a high population of disordered residues with low 
<SCE>.   Surprisingly, human In-PDB sequences show an inverse trend in <SCE> compared to 
the corresponding proteome distribution (Supplementary Fig. 17), i.e., higher in the In-PDB set 
even though this parameter is strongly skewed towards lower values for successfully crystallized 
proteins in the predominantly bacterial NESG dataset.  Analyzing individual amino acid 
frequencies shows that most of those that are significantly predictive in the NESG dataset display 
qualitatively equivalent trends in the human genomic dataset (Supplementary Fig. 18), including 
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those whose influence was inferred to be attributable to SCE effects.  These results demonstrate 
that the same physical and mechanistic effects influence crystallization of human proteins, 
probably including exposed <SCE>. 
 
We inferred that human proteins are likely to have a large content of crystallization-inhibiting 
sequences with low <SCE> that are uncommon in bacterial proteins.  Re-analyzing human 
proteome sequences after removing predicted disordered regions substantially shifts the <SCE> 
distribution towards higher values, giving a distribution that looks similar to that in E. coli 
proteins either with or without predicted disordered regions removed (Supplementary Fig. 17).  
This analysis demonstrates that human but not E. coli proteins have a very high prevalence of 
low SCE residues in disordered sequences (Supplementary Fig. 19), especially gly and pro 
residues which have zero SCE.  While gly strongly promotes crystallization when located in 
ordered loops (Supplementary Table 4), it is likely to have the opposite effect in disordered 
regions.  Indeed, multiple logistic regression on human In-PDB sequences vs. complete proteome 
confirms that both gly and pro content in predicted disordered regions strongly oppose crystal 
structure determination (data not shown). 
 
 
PXS-C-Hs : a conflated solubility / crystallization propensity measure for human proteins.   The 
distinct sequence properties of human proteins, especially the prevalence of low SCE residues in 
crystallization-inhibiting disordered sequences, are likely to limit the reliability of the PXS metric 
in predicting their crystallization behavior from genomic sequence.  Therefore, we applied 
equivalent statistical tools to the differences in In-PDB vs. genomic sequence distributions to 
develop a crystallization prediction metric specific for human genomic sequences that we call 
PC-XS-Hs (Supplementary Fig. 20).  This metric conflates expression, solubility, and 
crystallization effects, which means that it is uninformative relative to crystallization mechanism.  
However, it is designed to provide practical guidance in obtaining crystal structures from human 
protein domains.  In-PDB and proteome sequences were randomly assigned in a 4:1 ratio to 
training or validation sets.  As described more fully in the Methods section, individual logistic 
regressions against In-PDB status were run on 92 sequence characteristics.  Factors that 
correlated with success in single-parameter regressions at the Bonferroni-corrected significance 
level of 0.00054 (i.e., 0.05/92) were combined in order of significance by forward stepwise 
regression, with a p<0.05 threshold for inclusion in the final multiple regression.  The final 
conflated crystal structure solution metric for sequences from the Homo sapiens genome (PC-XS-

Hs) provides a highly significant ordering of the training set (N = 22,190, p<10-300), with strong 
calibration (insignificant Hosmer-Lemeshow lack of fit22, P = 0.411) and discriminatory power 
(area under the ROC of 0.882).  It performs almost as well on the test set (N = 5,457, P = 
1.61x10-67), with insignificant lack of fit (P = 0.319) and high ROC area (0.871).  The webserver 
performing the standard PXS calculation also performs this calculation 
(http://www.nesg.org/PXS/). 
 
 
 
More detailed discussion of overall results and implications.   This paper provides large-scale 
experimental validation of the hypothesis that surface properties are a principal determinant of 
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protein crystallization propensity.  Previous engineering studies (e.g., implementing the “surface 
entropy reduction” strategy) have demonstrated that manipulation of the surface properties of 
individual proteins can improve their crystallization23-27.  The studies reported in this paper not 
only provide rigorous statistical validation of the specific assumptions behind this strategy but 
also extend the underlying concept.  They demonstrate that the mean sidechain entropy (<SCE>) 
of surface-exposed residues is a highly significant determinant of protein crystallization 
propensity (Fig. 4b).  Previously reported epitope engineering work has focused primarily on 
eliminating lysine, glutamate, and glutamine (three of the four highest entropy residues)23-27, 
while the studies reported here show that reducing <SCE> of all surface-exposed residues 
correlates with increased probability of producing high quality crystals. 

Moreover, the detailed statistical analyses presented above suggest that this surface 
entropy effect is responsible for other sequence correlations with crystallization propensity that 
were previously observed17, 28-31 but not mechanistically explained.  While increasing pI or mean 
hydrophobicity reduces crystallization probability28, 30, these parameters both correlate with 
higher <SCE>, and their statistical significance in predicting crystallization propensity is lost 
when considered simultaneously with <SCE> (Table 1D and Supplementary Fig. 13).  
Combining the statistical dominance of <SCE> with the significant anti-correlation between 
crystallization propensity and predicted protein backbone disorder indicates that the prevalence 
of well-ordered surface epitopes is a major determinant of protein crystallization propensity, 
presumably because of the potential of such epitopes to mediate stereochemically specific 
interprotein packing interactions.  Given our observation that thermodynamic stability does not 
have a major influence on crystallization outcome (Fig. 1), we hypothesize that the prevalence of 
such epitopes is the dominant determinant of protein crystallization propensity.  On this basis, we 
propose that future research should focus on deeper understanding of the crystal-packing 
potential of linear sequence epitopes with the goal of generating more sophisticated sequence-
based probabilistic assessments of crystallization propensity to apply to target selection and 
crystallization epitope engineering. 

While the PXS metric reported above represents an initial step towards this goal, the size 
of our existing experimental database fundamentally limits us to considering average sequence 
properties plus single amino acid effects.  The content of many individual amino acids in specific 
secondary-structure / exposure classes is too low in this dataset to reliably assess their effect on 
crystallization propensity (Supplementary Table 4), as is the frequency of the most prevalent 
amino acid pairs (as discussed above).  Ongoing expansion in the size of well curated 
crystallization databases will help detect more complex sequence correlations.  However, other 
approaches will probably be required to detect correlations with longer linear sequence epitopes 
located in specific secondary structures, which are likely to be most powerful in predicting and 
engineering protein crystallization properties.  Comprehensive characterization of the packing 
interactions observed in existing crystal structures could provide relevant insight. 

In the meantime, the results reported in this paper provide potential hints regarding the 
nature of some favorable crystallization epitopes.  The positive effects of gly, ala, and phe 
residues on crystallization propensity, which remain statistically significant even after taking into 
account <SCE> (Table 1D and Supplementary Fig. 13), suggests that these residues may have a 
strong tendencies to mediate stereochemically specific interprotein packing interactions.  Ala 
does not make a significant independent contribution in multiple logistic regression analysis 
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(Table 1D), possibly due to the functional form of its influence not being well modeled by the 
logistic regression equation (Supplementary Fig. 8a), but it is predictive of outcome in the 
analysis of sets of proteins varying in their ala content while having equivalent distributions of 
predicted exposed <SCE> (Supplementary Fig. 13b). 

Gly may be particularly effective in mediating low-affinity but stereochemically specific 
interprotein interactions because of enhanced exposure of the amphiphilic polypeptide backbone 
in the absence of a sidechain.  Alternatively, its flexibility may permit “induced fit” 
conformational changes to optimize interaction geometry at packing sites, in which case the key 
gly residues are likely to be proximal to but not directly participating in interprotein interfaces.  
Further analyses will be required to clarify the physiochemical mechanism by which gly 
promotes the formation of high quality protein crystals.  Ala may similarly be effective in 
mediating interprotein packing interactions by providing increased access to the backbone for 
hydrogen bond formation.  Derewenda’s protein engineering results support this hypothesis, 
since the ala introduced by mutation has been involved in backbone hydrogen bond formation 
within crystal packing contacts in multiple cases 27, 32.   

In contrast to gly and ala, phe is strongly hydrophobic and therefore an excellent 
candidates to mediate hydrophobic interprotein packing interactions.  However, surface-exposed 
phe’s have been demonstrated to severely reduce the solubility of some proteins by promoting 
non-specific self-association21, one form of aggregation, which we demonstrate to strongly 
reduce the frequency of successful protein crystallization (Fig. 2b).  Therefore, phe is likely to 
have both positive and negative effects on crystallization propensity, depending on its exact 
stereochemical context as well as the other biophysical properties of individual protein. 

These considerations highlight a fundamental complexity regarding protein 
crystallization.  Obtaining a highly soluble protein preparation is the essential starting point for 
effective crystallization.  However, the fact that a crystal represents an insoluble phase of the 
protein means that there is an inherent physiochemical discrepancy between these requirements.  
Both low solubility (i.e., amorphous precipitation at low concentration) and crystallization are 
driven by low-affinity, non-physiological interprotein interactions.  The requirements for 
crystallization are substantially more stringent, because multiple orientation-controlling 
interactions must be made simultaneously consistent with the lattice geometry, but the individual 
interprotein contacts stabilizing a lattice are fundamentally similar to those driving amorphous 
precipitation.  Therefore, the sticky surface epitopes mediating the stereochemically specific 
interprotein interactions required to obtain a good crystal are likely to have some tendency to 
promote non-specific self-association, aggregation, and amorphous precipitation in the protein 
stock.  The fact that the same protein features can simultaneously promote and compete with 
high quality crystallization represents a fundamental conceptual and technical conundrum.  
Successful crystallization requires striking a potentially elusive balance between factors 
promoting protein solubility and factors promoting controlled interprotein interaction. 

The data presented above provide many specific examples of the physiochemical 
tradeoffs influencing this process.  High entropy charged sidechains clearly promote solubility 
while opposing crystallization.  The reduced predictive value of the crystallization-promoting 
sequence features in analyzing whole-genome results (Figs. S12-S14) is probably attributable to 
the pervasiveness of such offsetting effects on protein solubility and crystallizability. 
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Well-ordered, surface-exposed gly residues may provide an advantageous solution to the 
crystallization conundrum by forming epitopes capable of mediating stereochemically specific, 
low-affinity interprotein contacts while having a comparatively weaker tendency to promote 
promiscuous surface interactions.  Strongly hydrophobic surface features, like phe sidechains, 
are likely to mediate such promiscuous surface interactions promoting protein aggregation in 
addition to promoting stereochemically specific interprotein contacts during crystallization.  
Therefore, different kinds of surface features are likely to have different effects on the delicate 
balance between promotion of non-specific interactions and stereochemically specific 
interprotein packing interactions.  Further research will be required to critically evaluate the 
mechanistic hypotheses underlying these inferences as well as to elucidate more complex protein 
sequence features that optimally balance the physiochemical factors promoting the formation of 
high quality protein crystals. 
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Supplementary Methods 
 
 
Protein expression, purification, and analysis.   Proteins were expressed, purified, concentrated 
to 5-12 mg/ml, and flash-frozen in small aliquots as previously described33.  All proteins 
contained short 8-residue hexa-histidine purification tags at their N- or C-termini and were 
metabolically labeled with selenomethionine.  Matrix-assisted laser-desorption mass 
spectrometry was used to verify construct molecular weight.  All proteins were ≥95% pure based 
on visual inspection of Coomasie Blue stained SDS-PAGE gels.  The distribution of 
hydrodynamic species in the protein stock was assayed using static light-scattering and refractive 
index detectors (Wyatt, Inc., Santa Barbara, CA) to monitor the effluent from analytical gel 
filtration chromatography in 100 mM NaCl, 0.025% (w/v) NaN3, 100 mM Tris-Cl, pH 7.5, on a 
Shodex 802.5 column (Showa Denko, Tokyo, Japan).  Protein samples were flash frozen in 
liquid nitrogen in small aliquots prior to crystallization or biophysical characterization.   
Oligomeric state was inferred from the molecular weight determined by Debye analysis of the 
light-scattering data. 
 
 
Target selection and classification.   The 679 training and 200 validation protein sequences 
were culled from the SPINE database 34, 35, and included all proteins which passed aggregation 
screening for the selected time periods.  Proteins with transmembrane α-helices predicted by 
TMMHMM36 or >20% low complexity sequence were excluded from the pipeline.  Proteins 
were coded successful if they yielded a PDB structure deposition and failures otherwise.  While 
the reasons for failure in crystal structure solution could be complex, most are related to 
problems with the strength and consistency of the interprotein packing interactions in the lattice.  
Thus, we inferred that proteins giving diffraction that was not suitable for structure determination 
might have sub-optimal physical properties, and we decided to include this small sub-population 
among those in the failure set.  Retrospective analysis of the sequence properties of the subset of 
proteins that give diffracting but unsolvable crystals shows that several key parameters have 
trends that are more similar to proteins that fail to give diffracting crystals than to proteins that 
give crystal structures (Supplementary Fig. 7).  The consistency of the trends in this small subset 
with those in the larger failure set demonstrates that its inclusion is unlikely to significantly 
influence results. 
 
 
Creation of sets with matched predicted exposed <SCE> distributions to evaluate for 
independent sequence effects.   To determine whether some sequence parameters have an 
independent influence on crystallization propensity beyond their contribution to exposed 
sidechain entropy, the 679 proteins in the development/training set were sorted based on their 
predicted exposed <SCE> and then divided into 100 narrow and equally spaced bins based on 
this parameter value.  Each of the 71 predicted exposed <SCE> bins containing at least two 
proteins was then sorted based on a single covarying sequence parameter.  This secondary 
sorting was done separately for each sequence parameter being evaluated for a potentially 
independent effect (i.e., individual amino acid frequencies and charge parameters).  The two 
proteins in each bin with the highest and lowest values of that parameter were then assigned 
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respectively to the high and low value sets for that parameter.  These two protein sets have nearly 
identical distributions of predicted exposed <SCE> but strongly separated distributions of the 
parameter of interest (as shown in Fig. 20).  The fraction of proteins yielding a PDB deposition 
was calculated for each of these two sets, and the P-value for the probability of both sets coming 
from the same parent distribution was calculated using the Student’s T-test. 
 
 
Proteome-wide calculations.   Complete proteome sequences were taken from RefSeq2237 for 
humans and from Genbank38 for E. coli K12.  Proteins with one or more transmembrane helices 
predicted by the program TMHMM36 were excluded from analysis.  PDB sequences were 
extracted from the SEQRES field of each file in the February 15, 2008 release of the database 
based on the source organism identified in the header remark.  The fraction of proteins in the 
PDB in each parameter bin was calculated as the number of PDB sequences in a particular bin 
divided by the number of predicted soluble proteome sequences in that bin, ignoring 
complexities related to domain structure and construct optimization.  Rolling PXS averages were 
calculated using bins of 2000 proteins starting at the lowest observed parameter value. 
 
 
Conflated human crystallization metric (PC-XS-Hs).   Proteome and PDB sequences were 
randomly assigned at a 4:1 ratio to training or validation sets.  Single logistic regressions were 
run to evaluate potential correlations between logical status (PDB vs. proteome sequence) and 92 
different continuous variables calculated from the protein sequence: the count and fraction of 
each amino acid predicted to be buried or exposed by PHD/PROF18, fractional and whole values 
of net charge, the absolute value of net charge, the number and fraction of charged residues, 
GRAVY, <SCE>, predicted exposed <SCE>, the fraction of the backbone predicted to be 
disordered by DISOPRED239, and sequence length.  The combined model was built by stepwise 
forward logistic regression.  Each variable with a P-value below a Bonferroni-adjusted cutoff of 
0.00054 (0.05/92) in a single logistic regression was added to a null model in order of decreasing 
statistical significance and retained if its P-value within the model was less than 0.05.  If the 
addition of a new variable caused a previous variable to become statistically insignificant, the 
variable which had a larger effect on the overall model P-value was retained.  Each variable in 
the resulting model was individually removed to check for improvement in chi-squared P-value 
or Akaike’s Information Criterion (AIC)40.  All such trials worsened the model P-value and AIC, 
so all variables in the stepwise model were retained. 
 
 
Chemical denaturation experiments.   Crystallization stocks were diluted to 1 mg/ml in a buffer 
containing 50 mM NaCl, 10 mM NaPO4, pH 8.0.  Baseline CD spectra were measured from 190 
to 300 nm in an Aviv Model 202 spectropolarimeter to evaluate folding status prior to titration.  
An auto-titrator was used to mix this solution with an equivalent solution containing 1 mg/ml of 
the same protein in the same buffer plus 8M guanidine•GdnHCl.  The titration was monitored 
based on Θ222 nm to a final concentration of 6MGdn•HCl.  Free energy of unfolding in the 
absence of denaturant (ΔG0) was calculated by non-linear least-squares fitting of the equation 
ΔGu([Gdn•HCl]) = ΔG0 + m[Gdn•HCl]), with ΔGu([Gdn•HCl]) substituted by 
RT•ln([Folded]/[Unfolded]).  The ratio of folded-to-unfolded protein concentration was inferred 
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at each data point from the observed Θ222 nm relative to baselines linearly extrapolated from pre- 
and post-denaturation regions of the titration.  Proteins which showed no baseline before  the 
unfolding transition were considered partially unfolded in the absence of denaturant. 
 
 
Thermal denaturation experiments.   Crystallization stocks were diluted 1:40 to a final 
concentration of ~0.25 mg/ml in a buffer containing 150 mM NaCl, 100 mM HEPES, pH 7.5, 
plus 5X SYPRO Orange dye (Invitrogen).  Proteins were heated from 25˚ to 95˚ C at 1 
degree/min in optically clear PCR tubes in a Stratagene Mx3005P realtime-PCR machine.  Dye 
fluorescence was measured each minute.  Denaturation was detected based on a sigmoidal 
increase in fluourescence emission intensity caused by binding of the dye to hydrophobic regions 
of the protein41. Tm’s were identified as the temperature at which the first derivative of the 
fluorescence intensity was highest.  Proteins which showed no baseline prior to the thermal 
unfolding transition were considered partially unfolded in their stock solutions.  Proteins with 
high initial fluorescence or no visible transition had CD spectra measured in order to evaluate 
their folding status. 
 
 
Limited proteolysis experiments.   Crystallization stocks were diluted to 1 mg/ml in 50 mM 
NaCl, 10 mM Tris, pH 7.5 with either 0.005 mg/ml Proteinase K, 0.02 mg/ml trypsin, or no 
protease.  Reactions were incubated at 25 degrees for 40 minutes, stopped by addition of 5 mM 
PMSF, and incubated for an additional 2 minutes before final quenching with SDS sample buffer 
and flash freezing.  All proteins were digested and run on gels in parallel with two fiducial 
proteins, with protease conditions adjusted to produce close to total digestion of one (B. cereus 
agmatine deiminase, NESG ID BcR51) and negligible digestion of the other (E. coli ElbB, 
NESG ID ER105).  A computer interface was developed for display of scanned gels and blind 
scoring of five characteristics for each individual reaction: number of visible bands, percent of 
protein remaining in the intact band, percent of protein remaining in the most intensely stained or 
“dominant” band (whatever its size), percent of protein remaining integrated across all visible 
bands, and size of the dominant band relative to the intact band.  Two independent scorers agreed 
very closely (Pearson = 0.89), and the final score was taken as the average of the scorers and the 
average of the two proteases (because no significant differences were observed in single-protease 
metrics).  No significant change in correlation strength or probability was observed when the 
scores were normalized to those of the fiducial control proteins run in parallel, most likely due to 
the consistent conditions used for all proteolysis reactions.  Therefore, non-normalized scores are 
reported. 
 
 
Bis-ANS binding experiments.   The protein crystallization stock was diluted to a final 
concentration of 15 µM in a fluorescence cuvette containing 1.25 ml of 0.93 μM Bis-ANS, 50 
mM NaCl, 10 mM NaPO4.  Fluorescence spectra were acquired at room temperature in a PTI 
QuantaMaster C-61 spectrofluorimeter using an excitation wavelength of 375 nm.  Spectra from 
400-600 nm were taken every 30 seconds until stabilized, up to a maximum of 5 minutes. 
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Supplementary Table 1: Correlations between stability measurements.1 

 

 

1 Pearson correlation coefficients and associated P-values were calculated for pairs of possibly 
correlated variables including a variety of metrics describing the large scale limited proteolysis results.  
P-values below 0.01 are shown in boldface type.  ΔGunfolding was measured by chemical denaturation 
with guanidinium hydrochloride monitored by circular dichroism at 222 nm.  Thermal melting 
temperature (Tm) was measured by monitoring the fluorescence enhancement of the hydrophobic 
reporter dye SYPRO Orange in a realtime PCR machine41.  Limited proteolysis assays were conducted 
with either proteinease K or trypsin, and the data gels were scored blind by two independent evaluators 
based on the following parameters: percent of intact protein remaining, percent of initial protein 
remaining summed across all significant bands, relative size of the dominant fragment (as percent 
height of the band in the gel relative to the undigested protein – not molecular weight), number of 
significant bands, and percent of original protein remaining in the dominant (most intense) band.  All 
limited proteolysis variables listed are the average of proteinease K and trypsin scores, except 
correlations with fraction arginine and lysine (“K+R” under Variable 1) which are given separately for 
digestions with proteinease K (“PK” under Variable 2) or trypsin (“T” under Variable 2).  A significant 
correlation was observed between melting temperature and ΔGunfolding by chemical denaturation.  A 
significant and surprising correlation was also observed between the fraction of lysine and arginine in 
the protein chain and the percent of protein remaining across all bands following proteinease K 
digestion.  The fraction disordered was predicted by the program DISOPRED239 using a 5% false 
positive rate threshold. 

Variable 1 Variable 2 Pearson P-value 
ΔGunfolding Tm -0.748 0.0000000696 
ΔGunfolding Percent Protein Intact -0.264 0.144 
ΔGunfolding Percent Protein Remaining -0.0442 0.810 
ΔGunfolding Percent Size: Dominant Fragment -0.066 0.718 
ΔGunfolding Number of Bands 0.0905 0.622 
ΔGunfolding Percent Protein: Dominant Fragment -0.193 0.291 
Tm Percent Protein Intact 0.304 0.0636 
Tm Percent Protein Remaining 0.247 0.135 
Tm Percent Size: Dominant Fragment -0.0473 0.778 
Tm Number of Bands 0.0181 0.914 
Tm Percent Protein: Dominant Fragment 0.332 0.042 
Fraction (K+R) Percent Protein Intact (PK) -0.0463 0.627 
Fraction (K+R) Percent Protein Intact (T) -0.145 0.125 
Fraction (K+R) Percent Protein Remaining (PK) 0.328 0.000397 
Fraction (K+R) Percent Protein Remaining (T) 0.107 0.258 
Fraction (K+R) Percent Size: Dominant Fragment (PK) 0.132 0.163 
Fraction (K+R) Percent Size: Dominant Fragment (T) -0.0384 0.687 
Fraction (K+R) Number of Bands (PK) 0.164 0.0831 
Fraction (K+R) Number of Bands (T) -0.0253 0.790 
Fraction (K+R) Percent Protein: Dominant Fragment (PK) 0.0835 0.379 
Fraction (K+R) Percent Protein: Dominant Fragment (T) -0.0708 0.456 
Fraction Disordered Percent Protein Intact -0.0222 0.825 
Fraction Disordered Percent Protein Remaining -0.0305 0.761 
Fraction Disordered Percent Size: Dominant Fragment -0.0208 0.836 
Fraction Disordered Number of Bands -0.0698 0.486 
Fraction Disordered Percent Protein: Dominant Fragment -0.00324 0.973 
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Supplementary Table 2: Logistic regressions of charge variables.1 

Regression Variable Slope SD*Slope P-value 
Number of Positive Residues -0.00529 -0.071 0.454 
Number of Negative Residues -0.000367 -0.0055 0.952 
Number of Charged Residues -0.00133 -0.037 0.692 
Net Charge -0.0182 -0.12 0.175 
Absolute Net Charge 0.00270 0.014 0.876 
Fraction Positive Residues -10.7 -0.34 0.000665 
Fraction Negative Residues -7.57 -0.24 0.0144 
Fraction Charged Residues -7.36 -0.37 0.000249 
Fractional Net Charge -2.13 -0.081 0.376 
Fractional Absolute Net Charge -1.47 -0.042 0.650 
eSCE & Frac. Pos./Neg. Residues     0.0000192
eSCE -5.58 -0.441 0.0028 
 Fraction Positive Residues -1.37 -0.044 0.742 
 Fraction Negative Residues -0.488 -0.015 0.894 

1 Logistic regressions were calculated to determine the relationship between various 
charge measurements and the probability of crystal structure solution for 679 NESG 
pipeline proteins.  We call the product of the slope and the variable’s standard 
deviation the “predictive value”, the significance of which is explained below in the 
SI.  Variables describing electrostatic charge content are only significantly 
predictive after normalization to protein length (i.e., as fractional values).  However, 
the multiple logistic regression presented in the bottom section of the table, which 
analyzes mean side chain entropy (<SCE>) of predicted exposed residues together 
with the fractions of positive and negative residues, demonstrates that the predictive 
signal from the charged residues is lost when considered simultaneously with SCE.  
This result suggests that the latter term is mechanistically dominant. 
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Supplementary Table 3: Amino acid frequencies in the dataset of 679 NESG proteins and 

GRAVY/SCE values.1 

Residue 
Total 

fraction 

Fraction in 
predicted 

buried class 

Fraction in 
predicted 

exposed class 

Fraction of 
predicted 

buried class 

Fraction of 
predicted 

exposed class 
GRAVY 2 

 
SCE 3 

(kcal/mol) 
Ala 0.076 0.037 0.039 0.092 0.072 1.8 0 

Arg 0.049 0.004 0.045 0.01 0.076 -4.5 2.13 

Asn 0.039 0.0045 0.035 0.01 0.054 -3.5 1.22 

Asp 0.06 0.0035 0.056 0.0078 0.096 -3.5 0.86 

Cys 0.013 0.0099 0.0026 0.027 0.0052 2.5 0.58 

Gln 0.04 0.0035 0.036 0.008 0.058 -3.5 1.79 

Glu 0.082 0.0029 0.079 0.006 0.125 -3.5 1.39 

Gly 0.064 0.023 0.041 0.054 0.074 -0.4 0 

His 0.024 0.0078 0.016 0.019 0.026 -3.2 1.27 

Ile 0.064 0.052 0.012 0.138 0.017 4.5 0.77 

Leu 0.093 0.073 0.02 0.196 0.033 3.8 0.54 
Lys 0.066 0.0012 0.065 0.0027 0.098 -3.9 2.06 
Met 0.027 0.015 0.012 0.039 0.019 1.9 1.6 
Phe 0.038 0.031 0.0068 0.084 0.013 2.8 0.73 
Pro 0.042 0.0087 0.033 0.02 0.06 -1.6 0 
Ser 0.055 0.013 0.042 0.033 0.069 -0.8 0.6 
Thr 0.05 0.014 0.037 0.033 0.057 -0.7 0.48 
Trp 0.012 0.009 0.0026 0.024 0.004 -0.9 1.17 
Tyr 0.032 0.021 0.011 0.055 0.015 -1.3 0.72 
Val 0.069 0.052 0.017 0.14 0.027 4.2 0.41 
1 For each amino acid, its fractional content in the entire dataset is given in column 2, while the division of this 
fraction among the PHD/PROF-predicted buried and exposed classes is given in columns 3-4.  Columns 4-5 give the 
factional content of each amino acid among all the residues predicted to be buried or exposed, respectively.  The 
metrics in columns 2-4 are used for all analyses based on fractional amino acid content presented in this paper, but 
the normalization applied in columns 5-6 is used in calculating PXS. 
2 Hydropathy index values used for calculation of GRand AVerage of hYdropathy (GRAVY)12.  
3 Monte Carlo sidechain entropy (SCE) values at 37˚ C as given by Creamer42 and used for the calculations 
presented in this paper. 
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Supplementary Table 4: Amino acid correlations in PHD/PROF-predicted secondary 
structure classes.1 
  All Buried Exposed  All Buried Exposed
  8.8 9.6 6.6   -10.4 26 -9.8
Alanine 0.0019 0.025 0.057 Glutamate 0.0029 0.2 0.0043
Helix 0.17 1.3 1.6 Helix -10.66 19.6 -11.3
  0.96 0.82 0.77   0.0042 0.542 0.003
Sheet 29 35 34.0 Sheet 7.69 65.1 5.8
  0.00019 0.00049 0.027   0.29 0.096 0.43
Loop(1-5) 18 17 17.7 Loop(1-5) -0.51 94.9 -2.1
  0.085 0.41 0.13   0.96 0.20 0.83
Loop(6-15) 16 33 11.1 Loop(6-15) 2.10 -33.6 2.4
  0.034 0.041 0.18   0.76 0.64 0.72
Loop(>15) 11 38 7.5 Loop(>15) -13.02 -126.6 -12.6
  0.24 0.12 0.48   0.18 0.37 0.20
  All Buried Exposed  All Buried Exposed
  10.7 18 2.9   -9.7 -13.5 -9.4
Glycine 0.0046 0.00077 0.53 Lysine 0.0018 0.69 0.0028
Helix 5.7 25.9 -10.6 Helix -11.99 -3.9 -12.2
  0.5 0.042 0.40   0.010 0.941 0.010
Sheet 17 27.9 -0.5 Sheet -6.76 41.2 -7.2
  0.082 0.025 0.98   0.37 0.571 0.35

Loop(1-5) 9.2 16.4 6.9 Loop(1-5) -12.11 -210.6 -11.1
  0.18 0.25 0.36   0.23 0.20 0.27
Loop(6-15) 15 39.0 8.2 Loop(6-15) -4.36 -27.6 -4.2
  0.0088 0.00087 0.23   0.59 0.79 0.60
Loop(>15) -8.8 -25.5 -8.1 Loop(>15) -98.46 -98.5 -7.0
  0.32 0.32 0.44   0.60 0.60 0.44
  All Buried Exposed     
  12.9 9.7 23.9     
Phenylalanine 0.014 0.087 0.038  Total Slope/P Count 
Helix -0.51 -2.5 16.4  Helix -1.05 49918
  0.95 0.762 0.49    0.036   
Sheet 18.10 16.5 42.0  Sheet 1.46 26232
  0.013 0.042 0.05    0.032   
Loop(1-5) 16.02 16.7 18.3  Loop(1-5) 0.445 18753
  0.36 0.45 0.55    0.77   
Loop(6-15) 14.10 20.8 -3.0  Loop(6-15) 1.44 30890
  0.25 0.15 0.91    0.14   
Loop(>15) 3.70 -16.3 53.5  Loop(>15) -0.297 14521
  0.83 0.48 0.11    0.71   

1 For each significantly predictive amino acid, separate logistic regressions were calculated for the prevalence of the 
amino in a particular PHD/PROF18, 20, 43 predicted secondary structure, surface exposure category, or both, as a 

fraction of the entire protein chain length.  Each cell in the table shows the slope of the logistic regression (in blue) 
above the P-value for that regression (in maroon).  P-values at or below 0.01 are shown in boldface type.  The 

predictive effect of alanine localizes to sheets for poorly understood reasons, but becomes statistically insignificant 
when combined with other features in the final metric.  Glycine’s effect is localized to residues predicted to be 

buried in loops from 6-15 residues in length; visual inspection shows these residues to be primarily surface exposed 
(Supplementary Fig. 14).  The frequency of phenylalanine in the dataset is too low to give statistically reliable 

results after segregation into PHD/PROF classes.  Lysine and glutamic acid are both localized to predicted exposed 
positions in α-helices, consistent the surface entropy hypothesis; both are redundant with SCE in combined 
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regressions.   The sub-table at bottom right displays logistic slopes and P-values for the fractional content of 
PHD/PROF-predicted secondary structure classes along with the total count of amino acids in each class (in all 

proteins in the training dataset combined together).
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Supplementary Figure 1: Relationships between limited proteolysis results and protein 
crystallization outcome.   A representative set of 114 NESG pipeline proteins were subjected to 
limited proteolysis using proteinase K and trypsin (in two separate reactions).  Two independent 
evaluators scored the SDS-PAGE gels of the proteolysis products according to the criteria 
indicated below based on Coomasie Blue staining intensity.  Scores were averaged between the 
evaluators and the two different proteases.  Boxes indicate the fraction of proteins in the PDB for 
bins of each scored characteristic, while whiskers (error-bars) indicate 95% confidence limits 
calculated from counting statistics using the numbers in each bin.  The blue line in panel c traces 
the only significant logistic relationship.   (a) Percent of protein remaining intact (i.e., at the 
undigested position).   (b) Percent of starting protein mass (i.e., staining) remaining in all visible 
bands summed together.   (c) Size of the single most intensely stained or “dominant” fragment as 
a percentage of the intact protein size, based on height in the gel (not molecular weight).   (d) 

Page 23 of 46 in Supplemental Information 



Price et al.  November 26, 2008 
Supplemental Information  (continued) 

Number of visible Coomasie-stained bands.   (e) Percent of starting protein mass (i.e., staining) 
remaining in the single most intensely stained or “dominant” fragment.   (f) Slopes and P-values 
for the logistic regressions, with P-values below 0.05 shown in boldface type. 
 

The data show a statistically significant relationship between the size of the dominant 
protected fragment and the likelihood of solving a crystal structure (panel c).  This correlation is 
likely to reflect the influence of disordered protein segments in inhibiting protein crystallization 
(Fig. 4d and Table 1B).  Note that while no structures were produced by the proteins in this 
dataset showing protease-resistant fragments when the dominant protected fragment was less 
than less than 40% of the size of the intact protein, a good rate of crystal structure determination 
was observed for the completely digested proteins (i.e., those in the 0% bin).  Because of this 
pattern, the statistical significance and predictive value of the dominant protected fragment size 
are both increased when the 0% bin containing completely digested proteins is removed from 
logistic regression analysis (panel f).  Completely digested proteins are likely to have low 
thermodynamic stability, which does not reduce crystallization propensity relative to other folded 
mesophilic proteins (Fig. 1).  However, those showing dominant protected fragments less than 
40% of the size of the intact protein are likely to have higher stability, at least in one domain, but 
also have multiple internal sites accessible to protease.  These proteins are likely to have a 
significant content of flexible surface loops and/or disordered backbone segments, which inhibit 
effective crystallization (Fig. 4d and Table 1B).  Based on these arguments, except in the 0% bin, 
the size of the dominant proteolytically protected fragment is likely to be a measure the extent of 
flexible and disordered polypeptide segments rather than the overall stability of the protein. 
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Supplementary Figure 2: Correlations between different stability measurements and between 
protease sensitivity and sequence composition.   (a) 23 NESG pipeline proteins were evaluated 
in both chemical denaturation studies and thermal unfolding studies.  The plot shows a 
significant correlation between ΔGunfolding and Tm (N = 23, P = 0.000027).   (b) 114 NESG 
pipeline proteins underwent limited proteolysis by proteinease K.  The plot shows the significant 
correlation between the fraction of protein remaining summed across all bands after proteinease 
K digestion and the fraction of arginine lysine and arginine residues (“K+R”) in the protein chain 
(N = 114, P = 0.00059). 
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Supplementary Figure 3: Lack of correlation between mean hydrophobicity and protein 
stability.  Thermal denaturation studies were conducted on 117 NESG pipeline proteins, while 
chemical denaturation studies using guanidinium-HCl were conducted on 36 to estimate 
ΔGunfolding .   (a) The plot of GRAVY (mean hydrophobicity) vs. thermal melting temperature 
(Tm) shows no significant correlation (Pearso n =0.12, N = 117, P = 0.19).   (b) The plot of 
GRAVY vs. ΔGunfolding shows no significant correlation (Pearson = -0.059, N = 36, P = 0.73). 
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Supplementary Figure 4: Evaluation of the relationship between folding status and mean net 
charge / hydrophobicity.   Symbols encoding the folding status of each protein are positioned 
according to their mean net charge on the abscissa and mean hydrophobicity (GRAVY12) on the 
ordinate.  Proteins classified as unfolded had a minimal CD signal and exhibited no transition in 
either thermal or chemical denaturation experiments, while those classified as partially unfolded 
exhibited no pre-transition baseline and a Tm under 35°C in thermal denaturation experiments or 
no pre-transition baseline in chemical denaturation experiments.  Aggregated proteins were 
identified based on analytical gel filtration / static light scattering analysis.  The black line has 
been posited by Uversky to segregate stably folded proteins (above the line) from natively 
unfolded proteins (below the line)11.  A Fisher’s exact test on the data shown here does not 
support that hypothesis (p = 1). 
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Supplementary Figure 5: Fluorescence enhancement of the hydrophobic reporter dye bis-
ANS is not correlated with crystallization success.   Experiments were conducted on 38 NESG 
pipeline proteins, which were added to a final concentration of 15 μM to a cuvette containing 
0.93 µM bis-ANS.  The dye was excited at 395 nm while fluorescence emission spectra were 
acquired from 400-600 nm.  The enhancement was calculated as the ratio of dye fluorescence in 
the presence of protein to that in its absence at the peak wavelength of the emission spectrum in 
the presence of protein.  No significant difference is observed in enhancement for proteins that 
yielded a crystal structure compared to those that did not (pT-test=0.91).  Among the limited set of 
proteins for which both stability and bis-ANS measurements were performed, enhancement did 
not correlate significantly with ΔGunfolding (N = 9, P = 0.23) or Tm (N = 12, P = 0.68) according 
to logistic regression analysis.  All proteins determined to be unfolded in their crystallization 
stocks exhibited greater than 100-fold fluorescence enhancement, but not all proteins with more 
than 100-fold enhancement were unfolded. 
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Supplementary Figure 6: Crystallization screen hit count is correlated with eventual structure 
solution.   The number of unvalidated crystal hits in the Hauptman-Woodward Institute’s 
microbatch-under-oil 1536-condition screen was correlated with the probability of eventually 
depositing a crystal structure in the PDB.  This analysis included 522 of the 679 biochemically 
tractable NESG pipeline proteins used for other datamining analyses.  The boxes indicate the 
fraction of proteins for which crystal structures were successfully determined binned by the 
number of HWI hits.  The whiskers (error-bars) indicate 95% confidence limits calculated from 
counting statistics using the numbers in each individual bin.  A strong logistic relationship was 
observed (N = 522, P = 8.4x10-19).  Of the 10 crystal structures solved for proteins that failed to 
give any crystal hits in this screen, initial lead crystals were identified for eight through vapor-
diffusion screening in the absence of added ligand while the final two only gave crystals leads 
after screening in the presence of physiological ligands.  We hypothesize that proteins with 
multiple potential contact sites are more likely to form crystals in many conditions and are also 
inherently more likely to form high quality crystals suitable for structure determination.  A larger 
number of hits does imply a higher probability of obtaining a crystal suitable for structure 
determination even if all hits have an equal probability of achieving the requisite quality.  Further 
analysis will be necessary to understand the mechanistic details underlying the observed 
relationship. 
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Supplementary Figure 7: Sequence parameter distributions in proteins giving unsolved 
crystals.   Histograms of parameter distributions are shown for the 679 NESG pipeline proteins 
in the training set which produced crystal structures (InPDB, solid purple) and which failed to 
produce crystal structures (OutPDB, dotted purple) as well as for the subset of 39 of those 
proteins that produced diffracting crystals of insufficient quality for successful structure 
determination (Strong and Weak, solid and dotted gray, respectively).  Strong indicates that 
diffraction was observed at 4 Å or better at the synchrotron, while weak indicates that diffraction 
was observed but only at lower resolution.  Strongly diffracting crystals that failed to yield 
structures generally have high mosaicity or anisotropy.  Distributions are shown for: (a) fraction 
of glycine in predicted buried residues; (b) predicted exposed <SCE>; (c) GRAVY; and (d) 
fraction of predicted disordered residues.  Two-tailed unpaired T-tests for differing means 
showed no difference between the strong and weak sets, so they were combined for comparison 
with the InPDB and OutPDB sets.  The combined set of diffracting crystals of insufficient 
quality to support structure determination is significantly different from the InPDB set in its 
fraction of glycine in predicted buried residues (P = 6.1x10-15), predicted exposed <SCE> (P = 
0.00039), and GRAVY (P = 0.040).  This set is also significantly different from the OutPDB set 
in its fraction of glycine in predicted buried residues (P = 2.9x10-10).  Note that the set of 
diffracting crystals that failed to yield structures has a lower frequency of glycine in predicted 
buried residues than either the InPDB or OutPDB sets.  These results support the premise that 
proteins yielding poor or pathological crystals are more similar to those that do not yield 

Page 30 of 46 in Supplemental Information 



Price et al.  November 26, 2008 
Supplemental Information  (continued) 

diffracting crystals than to those that provide high quality crystals suitable for structure 
determination. 
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Supplementary Figure 8: Effects of significantly predictive individual amino acids on success 
in crystal structure determination.   Box-and-whisker plots show data for the 679 NESG 
pipeline proteins comprising the training set for the analyses presented in the paper.  The boxes 
indicate the fraction of proteins for which crystal structures were successfully determined binned 
by fractional content of each amino acid.  The whiskers (error-bars) indicate 95% confidence 
limits calculated from counting statistics using the numbers in each individual bin.  The blue 
lines trace the logistic relationships for (a) ala (P = 0.0019), (b) glu (P = 0.0029), (c) phe (P = 
0.015), (d) lys (P = 0.0018), and (e) gly (P = 0.0046). 
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Supplementary Figure 9: Relationship between protein electrostatic charge variables and 
success in crystal structure solution.   Box-and-whisker plots show the fraction of proteins for 
with crystal structures were deposited in the PDB and associated 95% confidence limits 
(calculated from counting statistics using the numbers in each bin) for the 679 NESG pipeline 
proteins comprising the training set.  Binning is based on the whole (not length-normalized) or 
fractional (length-normalized) electrostatic charge variable indicated on the abscissa of each plot.  
Logistic regression slopes, predictive values, and P-values from these analyses are presented in 
Supplementary Table 2 above.   (a) Predicted number of electrostatically charged residues in 
each protein at neutral pH, calculated as the sum of the number of arg, lys, asp, and glu residues.   
(b) Predicted fractional content of electrostatically charged residues (i.e., the data from panel a 
normalized by protein chain-length).   (c) Predicted net electrostatic charge of each protein at 
neutral pH, calculated as the number of arg and lys residues minus the number of asp and glu 
residues.   (d) Predicted net electrostatic charge from panel c normalized by protein chain-length.   
(e) Absolute value of the predicted net electrostatic charge of the protein at neutral pH (i.e., the 
absolute values of the numbers used to generate panel c).   (f) Absolute value of the predicted net 
electrostatic charge from panel e normalized by protein chain-length. (g) Number of positively 
charged residues (arg plus lys).   (h) Number of positively charged residues from panel G 
normalized by protein chain-length.   (i) Number of negatively charged residues (asp plus glu).   
(j) Number of negatively charged residues from panel i normalized by protein chain-length.
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Supplementary Figure 10: Comparison of whole and fractional predictors.  Negative log P-
values are shown from logistic regressions of whole (unnormalized) and fractional (length-
normalized) parameters correlated against crystal structure solution for 679 NESG pipeline 
proteins.  Parameters are shown in descending order of the statistical significance of the 
fractional predictor.  Fractional values are more significant than whole values for every 
significant predictor. 
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Supplementary Figure 11: Relationship between protein isoelectric point (pI) and crystal 
structure solution.   Data is presented for the 679 NESG pipeline proteins comprising the 
training set.   (a) Histograms showing pI distributions for proteins that yielded a crystal structure 
(In PDB) or that did not (Out PDB).   (b) A box-and-whiskers plot binned by pI, showing the 
fraction in PDB and 95% confidence limits calculated from counting statistics using the numbers 
in each bin. 
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Supplementary Figure 12: Relationship between protein chain-length and success in crystal 
structure solution.   Data is shown in panels a and c for the 679 NESG pipeline proteins 
comprising our training set and in panels b and d for the predicted soluble proteomes from H. 
sapiens and E. coli compared to all PDB deposition of proteins from these species (culled at 30% 
sequence identity).   (a,b) Histograms showing chain-length distributions for proteins that 
yielded a crystal structure (In PDB) or that did not (Out PDB).   (c,d) Box-and-whiskers plots 
binned by chain-length showing the fraction in PDB and 95% confidence limits calculated from 
counting statistics using the numbers in each bin.  The relationship appears bimodal for the 
NESG training set, with an inflection point at a protein chain-length of approximately 400 amino 
acids.  The blue line in panel c traces the logistic regression result for NESG proteins under 400 
amino acids in length (p = 0.024), while the red line traces that for proteins over 400 amino acids 
in length (P = 0.11).  Length has no significant predictive effect for the E. coli proteome (black 
in panel d) when all proteins are considered at once, while increasing length shows a highly 
significant correlation with decreasing success in crystal structure determination for the human 
proteome (P = 7.8x10-52 – red in panel d).  Notably, the rate of PDB depositions from the human 
proteome appears uniform up to approximately 350 amino acids and declines steeply from 400-
700 amino acids, matching the qualitative trend observed in the NESG training set. 
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Supplementary Figure 13: Evaluation of the residual influence of individual amino acid 
frequencies on crystallization propensity in sets of proteins with matched predicted exposed 
<SCE> distributions.   To examine whether specific amino acids have an influence on success in 
crystal structure determination beyond that associated with their SCE, protein sub-sets were 
generated with matched exposed <SCE> distributions but differing in content of specific amino 
acids.  The 679 NESG proteins in the training set were separated into 100 equally spaced bins 
based on predicted exposed <SCE>, producing 71 bins containing at least two proteins.  Each of 
these bins was sorted based on the fractional content of the amino acid to evaluated (i.e., 
separately for each amino acid frequency), and the two proteins with the highest and lowest 
parameter values were assigned to the High and Low sets for that parameter.  This procedure 
created two sets systematically differing in the frequency of the amino acid being evaluated 
while having nearly identical distributions of overall predicted exposed <SCE>.  Each graph 
shows the resulting distributions of the amino acid frequency in the pair of sets created to 
evaluate whether it has any residual influence on crystallization propensity.  Superimposed on 
each distribution is a bar showing the fraction of proteins in that set yielding a PDB deposition 
along with error bars representing 95% confidence limits calculated from counting statistics 
using the numbers in each bin.  The Fisher’s Exact Test was used to evaluate the statistical 
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significance of the observed difference in structure determination rate (i.e., the P-value for the 
observed difference in structure determination rate to occur at random in populations of that 
size).  Each analysis and graph includes two proteins in each of 71 bins (N = 142).  The amino 
acids whose frequencies are positively correlated with success in structure determination in the 
entire training set ((a) gly, (b) ala, and (c) phe) remain statistically significant predictors of 
success even in sets of proteins with equivalent distributions of exposed <SCE>, indicating that 
they have more favorable properties in mediating high quality lattice packing contacts than 
accounted for by their low sidechain entropy.  No other parameters are significantly predictive of 
success in protein sets with matched distributions of exposed <SCE> (i.e., (c) glu, (e) lys, (f) 
GRAVY (f), (g) fraction of charged residues (arg+lys+asp+glu), (h) fraction of positively 
charged residues (arg+lys), or (i) fraction of negatively charged residues (asp+glu)).  Therefore, 
the influence of these parameters on crystallization propensity is primarily attributable to 
sidechain entropy and probably not any independent effect. 
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Supplementary Figure 14: Locations in representative crystal structures of glycines predicted 
by PHD/PROF to be in loops 6-15 residues in length.   Gly residues predicted by PHD/PROF to 
be in loops of this length are displayed in space-filling representation in stereo ribbon diagrams 
generated by PYMOL44.  PHD/PROF-predicted exposed and buried residues are colored orange 
and blue, respectively.  The majority of the predicted buried residues are at least partially 
solvent-exposed in the protomer structures.   (a) Chorismate synthase from C. jejuni (PDB id 
1SQ1) has 23 glycines predicted to be in loops of the relevant size.  Among the eight of these 
predicted to be exposed, five were not sufficiently well ordered to be modeled in the crystal 
structure, while the remainder were partially solvent-exposed.  Among the 15 predicted to be 
buried, one was not sufficiently well ordered to be modeled, 11 were partially solvent-exposed, 
and only three appeared to be buried.   (b) A dimer of the putative proline racemase from B. 
melitensis (PDB id 1TM0) is shown, which has 19 gly residues in each protomer predicted to be 
in loops of the relevant size.  Among the eight of these predicted to be exposed, one was not 
sufficiently well ordered to be modeled in the crystal structure and seven were partially solvent-
exposed.  Among the 11 predicted to be buried, seven were partially solvent-exposed, two 
appeared to be buried in the protomer, and two were buried in the homodimer interface (shown 
at the center of the stereopair).  These last two, which directly mediate the intersubunit packing 
interaction, would be solvent-exposed prior to dimer formation. 
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Supplementary Figure 15: Functional form of the PXS predictive metric.  (a) The box-and-
whiskers plot binned by Pxs value shows the fraction of the 679 NESG pipeline proteins in the 
training set yielding successful crystal structure determinations and 95% confidence limits 
calculated from counting statistics using the numbers in each bin.  The blue line traces the result 
of the multiple logistic regression (N = 679, P = 0.0000000053).   (b) The functional form of 
PXS is shown.  The contributing variables are mean side chain entropy of PHD/PROF-predicted 
exposed residues (<SCE>exp), percent glycine among predicted buried residues (%Glybur), 
percent residues predicted to be disordered by DISOPRED2 (%Diso), and percent phenylalanine 
in the complete sequence (%F).  A webserver performing this calculation on user-specified 
protein sequences is available on the internet for public use at http://www.nesg.org/PXS/. 
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Supplementary Figure 16: Analyses of whole proteomes from E. coli and H. sapiens using 
PXS.   (a) Box-and-whisker plot binned by Pxs value showing the fraction of proteins from the 
predicted soluble proteomes of E. coli or H. sapiens with structures deposited in the PDB and 
95% confidence limits calculated from counting statistics using the numbers in each bin.  
Fractions are calculated as the number of structures deposited in the PDB from each species in 
each bin divided by the number of genomic sequences in the same bin.  Logistic regression lines 
are shown for E. coli in black (N = 3,962, P = 0.07) and humans in red (N = 27,652, P = 6.7x10-

36).   (b) The fraction of proteins deposited in the PDB is graphed as a function of the rolling 
average of 2000-protein bins from the E. coli (panel b) and human (panel c) predicted soluble 
proteomes.  The same logistic regression lines are shown as in panel a. 
 

Page 41 of 46 in Supplemental Information 



Price et al.  November 26, 2008 
Supplemental Information  (continued) 

Supplementary Figure 17: Distributions of bulk sequence parameters in predicted soluble 
proteomes and corresponding sequences deposited in the PDB.   Histograms of parameter 
distributions are shown for the 679 NESG pipeline proteins in the training set segregated by 
whether or not a crystal structure was successfully determined (In PDB represented by solid 
purple line vs. Out PDB represented by dotted purple line), for the complete E. coli (dotted black 
line) and H. sapiens (dotted red line) predicted soluble proteomes, and for the sets of proteins 
from these organisms whose crystal structures have been deposited in the PDB (culled at 30% 
sequence identity) (with the E. coli PDB represented by a solid black line and the H. sapiens 
PDB represented by a solid red line).  The distributions labeled “LoDiso” are for the two H. 
sapiens datasets after removing all proteins with sequences predicted to be more than 25% 
disordered by DISOPRED2 (with the whole soluble proteome represented by a dotted blue line 

Page 42 of 46 in Supplemental Information 



Price et al.  November 26, 2008 
Supplemental Information  (continued) 

redicted exposed residues.   (d) Fraction of residues predicted 
to be disordered by DISOPRED2. 

and those deposited in the PDB by a solid blue line).   (a) GRAVY (mean residue 
hydrophobicity).   (b) Fractional gly content in PHD/PROF-predicted buried residues.   (c) Mean 
sidechain entropy of PHD/PROF-p
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Supplementary Figure 18: Distributions of individual amino acid content in predicted soluble 
proteomes and corresponding sequences deposited in the PDB.   Histograms of amino acid 
content in the complete  E. coli (dotted black line) and H. sapiens (dotted red line) predicted 
soluble proteomes, and for the sets of proteins from these organisms whose crystal structures 
have been deposited in the PDB (culled at 30% sequence identity) (with the E. coli PDB 
represented by a solid black line and the H. sapiens PDB represented by a solid red line).   (a) 
Alanine.   (b) Glutamic acid.   (c) Phenylalanine.   (d) Lysine.   (e) Glycine. 
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Supplementary Figure 19: Enrichment of individual amino acids in disordered sequences 
from H. sapiens vs. E. coli.   The graph shows the ratio between the frequency of each amino 
acid in disordered vs. ordered sequences in the predicted soluble proteomes of E. coli (black 
bars) or H. sapiens (red bars).  Disordered sequences are defined as continuous segments at least 
10 residues in length predicted to be disordered by DISOPRED2, while ordered sequences are 
defined as all other segments.  Gly is highly enriched in disordered sequences from human but 
not E. coli proteins, while pro is significantly enriched in both but more strongly in human 
proteins, and ser is highly enriched in both. 
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Supplementary Figure 20: Human conflated predictive metric.  The predicted soluble human proteome 
and redundancy-culled human PDB were randomly divided into two sets in a 4:1 ratio for training and 
testing the metric.  Individual logistic regressions against In-PDB status were run on 92 sequence 
characteristics (including <SCE> and GRAVY, which are not included in the final model).  Factors that 
correlated with success in single-parameter regressions at the Bonferroni-corrected significance level of 
0.00054 (i.e., 0.05/92) were combined in order of significance by forward stepwise regression, with a 
p<0.05 threshold for inclusion in the final multiple regression.  The resulting metric conflates the 
experimental stages of expression, purification, crystallization, and structure solution.  We call it PC-XS-Hs 
because it predicts the conflated probability of determining a crystal structure for a sequence from the 
Homo sapiens genome.  While not informative in terms of crystallization mechanism, this metric is design 
to aid selection of human targets for crystal structure determination and may aid in understanding 
competing trends across the crystallization process.  The publicly available webserver that performs the 
standard PXS calculation also performs this calculation (http://www.nesg.org/PXS/).   (a) The fraction in 
PDB for bins of PC-XS-Hs in the training and test sets are shown in black and gray, respectively, with 95% 
confidence limits calculated from counting statistics using the numbers in each bin.  The multiple logistic 
regression model, shown by the dashed blue line, matches the training set (N = 22,190, p<10-300) with an 
insignificant Hosmer-Lemeshow lack of fit22 (P = 0.411), indicating good calibration, and an area under 
the ROC curve of 0.882, showing good discrimination.  The PC-XS-Hs metric predicts the test set nearly as 
well (N = 5,457, P = 5.74x10-71, insignificant Hosmer-Lemeshow lack of fit (P = 0.319), and high ROC 
area of 0.871).   (b) The functional form of the model. (c) Table showing the variables and coefficients 
used in the final model. 
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