Supplemental Data

ERAAP Synergizes with MHC Class I Molecules

to Make the Final Cut in the Antigenic Peptide

Precursors in the Endoplasmic Reticulum

Takayuki Kanaseki, Nicolas Blanchard, Gianna Elena Hammer, Federico Gonzalez, and Nilabh Shastri

Figure S1. The Degredation of the Peptides by Recombinant ERAAP and Peptide-Specific Protection by MHC I

(A) Recombinant ERAAP trims both QL9 and SHL8 synthetic peptides, and K^b MHC protects SHL8 but not QL9 from degradation. Synthetic QL9 or SHL8 peptides were incubated with or without rERAAP, in the presence or absence of K^b-Ig fusion protein. The remaining QL9 or SHL8 peptides were measured by 2CZ or B3Z responses respectively in the presence of appropriate APCs.

(B) Kinetics of trimming the N-terminally extended X7[QL9] synthetic peptide. Recombinant L^d delays the peptide degradation by rERAAP. The X7[QL9] peptide was incubated with or wihout rERAAP, in the presence or absence of L^d-Ig fusion protein. Each reaction was stopped by adding acetic acid at indicated time points, and remaining QL9 peptides were detected in a T cell assay in the presence of APCs expressing L^d.

Figure S2. Intracellular L^d Is Bound to the Extended EPK[QL9] Peptide

The COS cells were transfected with ES-X3-EPK[QL9], L^d and ICP47. After two days the cells were treated with mild-acid and washed extensively before peptide extraction. Cell extraction, RP-HPLC and immunoprecipitation procedures were identical to those for Fig 7. (a) After the acid-wash the cells lost most of the L^d MHC from the cell surface as indicated by L^d staining by 28.14.8 monoclonal antibody. However, comparable profiles of peptides were found in (b) the total cell extract fractionated by RP-HPLC, as well as in (c) anti L^d (28.14.8) immunoprecipitate. All fractions were treated with trypsin before the T cell assay.