Web Appendix I

Gibbs sampler

We derive all full conditional distributions required for the Gibbs sampling algorithm
below. Based on the likelihood (3.2) and the prior for b; in (3.10), we obtain the
distribution of V;; = (Y}, W[}/,

m  n;

f(V18, Ry, B, %) = [ T[] £(Vil8, %)
L = (7.1)
o exp {—5 > oD (Vi = XyB)S (Y - Xujﬁ)}
i=1 j=1

which is a multivariate normal with mean X;;3 and covariance 3J;. Hence, the fac-
tors f(Winis|0, Yobs, Yinis, Wobs), f(Yomis|0, Yobs, Wops) and f(Yous|6, Qobs, Wops) from
(4.1) are multivariate normal, multivariate normal and truncated multivariate normal,
respectively. The full conditional distribution of 3 is given as

BIV. S0, B, ~ N((ii%z;%)1(%%){5@;%),

i=1 j=1 i=1 j=1

— (7.2)
: -1
( Zxéjzflxij>
i=1 j=1
The correlation matrix R; 11 can be generated from
T(RinlY, B1)
—T— 1)+T+1 1 i
x| R; 11| exp { - 5“[2 (Yi; — X1:581) (Y5 Xlzgﬂl) ; 11] }X (7.3)

j=1

Krigp:rije=10J=k),|rijl <1 (j#k)and R;;; is positive definite},
where ;4 (t,1 = 1,---,T) is the element of the tth row and I/th column in R, ;.
This is a constrained inverse Wishart with degrees of freedom n; — T — 1 and scale
matrix (]. + l/nl) 2?1:1 (Yz] — Xlij/Bl) (K] - Xlijﬁl)/- How to sample Ri,ll from this

distribution was discussed in Section 4.2.2.



The full conditional distribution of b;s is

bis|Z;, C;, 6;, 35, ~ N( (Z 3521 22 Cijs + Eb 5> (Z thizz 22211 + Ebélibus> )

1
(Z j52122 ZJ5+Zb5> >7

where fu,,, and 3, were defined the same as in Section 3.2.2, Z;; = Wi; — Xo;3s,

(7.4)

and b;s and Cjj5 were defined in Section 3.2.1.

The full conditional distribution of each component 6,4 of §; is Bernoulli with prob-
ability

Q41

7 1bZ7 1752 T
7(0ie = 1|bs, pi, Oginry) = o s

(7.5)
where d(; ;) denotes a vector consisting of all elements of §; except d; 4,
aypp = 7(b;|0i,u = 0,66.u))m (05,0 = O|p;)

and

a;; = W(bi’(Si,tl =1, 5(z’,tl))7f(5i,tz = 1’]91')

Next, the full conditional distribution of p; is

T T
" 1/a 1/a
(pZ|Z“ CZ’ b“ 5“ 222) — pz|5 o H H ‘t I 0+1 ztl(l Lt I 0+1)1 04,11 7‘1 (1 pz) -1
t=1 =1

(7.6)
which can be sampled using the Metropolis-Hastings algorithm. Finally, 37,, is

sampled from

X0l Zi, Ciy by, 8 ~ TW (vs, Ssh) (7.7)

with

Vs, =Ny — T—1 and SE = Z (sz — C”bz) (ZZJ — Cljbl),

J=1



Web Appendix 11

Proof of Proposition 1

Since Y ~ TN(p, ¥)Iy,, then by the property of a TMVN distribution, Z = P7'Y
is also distributed as a TMVND with mean P~y and variance I = P! P! ie
Z ~ TN(P ', I)I,, where P is defined in the statement of Proposition 1 and
H is the P-transformed version of U;. H is a convex set because it is transformed
by non-singular matrix P from U; which is also a convex set. This implies that
Uy, the tth ordinate of Uy (t = 1,---,T), has one of the following three forms: 1)
z >a; 2) z <b 3)a < z < b where a and b are bounded constants. Hence
generating Y by Gibbs sampling from W(ygk)]yik), ,ygk)l,yfill), e ,y&kil)) with
mean and variance in (4.2) is equivalent to first generating Z by Gibbs sampling
(k) (k=1) (k=1)

from 7r(z§ )|z§ ), S 2y %4 st Zp ) with mean 14 and variance 1, where v; is

the tth element of P~y and then transforming back to Y via PZ. O
Proof of Proposition 2

Extending the idea in Liu (2007) and Liu and Daniels (2006), based on transformation

(4.4), we derive the Jacobian. The following identities are needed

3(1’217"' ,ani)' 3(1@1,"' ,Km)' 3(7’1'21,"' 77”z'T(T—1))/

=0, —0, =5 Tl y,
O(io1, -, imrr-1)) O(bi1, - birr) O(biar, - birr)
(Y, -, Vi)'
- = _ D,
a(}fliy .. }/?(knlfl)) < n;—1 ® > i1y

O, -, Yin,)

a(wi_llh e 7w;%T) B

12

O(ripr, - - ,m,T(Tl))" - ﬁ(w‘l)T‘l = |Dj!
O(Wigr, - s Yirr-1)) ey v
8(bz 11, """ ;bi,TT)/ _ |D~_1|_T
a(bz 11777 7bf,TT) '
8( z11a"‘ :T/J_TIT)/ 1 = 3

: = ()" | [@Wi)? o< D7
ot vty |~ 2 L0




where P;; and P, are matrices, not depending on D;. Then the Jacobian is

(Y1, ,Yin,; , Ri,B;)

O ¥, ) = B)

J:

+

’
O(Yi1,, Yin, ri21, T v(7—1):0i,11, b3 TT)
* * 2 2 j * *
8(}’“7... »Y;(ni,nﬂﬁi’lp“' azpi,TTﬂpz,le“' a¢i,T(T—1)7bi,117“' 7bi,TT)

+

.| (Ini-1 @ DY P,
sippp| B @ PP by pon
P, .
=|D; 2 I,.QD;" 0 P,
:|Di_1|2|Di_1 ni—1 _ ’Dz_l ni—i-l’

where T' is the number of time points, n; is the number of subjects in group 7, and
| |+ means the absolute value of the corresponding determinant. Using prior (4.5)

with a; = 1, the joint distribution of Y;, R; and B; given (3 is

_nitl 1« _
p(Y;, R;, Bi|B) o<| R[> exp {—5 > (Y- XuB) R (Y — Xijﬂ)} X

Jj=1

. (A1)
1 : / %1
exp {—5 > (Zij— Ciybi) B0y (Zij — Cz‘jbz')} 7

=1
where Y; = (Y, -, Y, and Z;;, Cy;, and b; were defined previously. Through
the one-to-one mapping T : (Y;, R;, B;) — (Y;*, ¥;, B}), we have

n;+1

p(Y;", ¥y, BY|B) o< |R;|” 2

1 IBS -
exp {—521’5 \I'z-_lYi}‘} - exp {—5 > (2 - BiY;) S (2, - BikYzﬁ} :
j=1

Jj=1

X J X

(A.2)

So,

N . . T 1 1
m(W,[Y7", By, B) o p(Y™, Wi, B|B) oc [Wi 2 exp y =5 Si¥i o

where v; = n; =T, §; = Y777, Y;;Y%’ Y = (Y3, Y

ij v Li znl) and Yz; = DZ(K] -
Xlij,B)- O



Before we give the proof of Theorem 2, we introduce three important lemmas. The
first two lemmas come from Marshall and Olkin (1979) and the third one is from

Chen and Shao (1999).

Lemma 1. Assume that Ay and As are two positive definite p X p matrices, then
|As + Az > A > N)(Ay),
where A\ (A1) > Ao(Ay) > -+ > N\, (Ay) are the ordered eigenvalues of A;.

Lemma 2. For two positive matrices Ay and Ay with p by p dimensions, the following

inequality holds:
p
tr(A;Ay) > E Mp—kt1(A1) A (A2),

k=1

where \y > Ay > -+ > A\, are the ordered eigenvalues of the corresponding matrices.

Lemma 3. Let @ = (0,---,0;), A be an n X k matriz. Assume that A is of full

rank and that there exists a positive vector a such that
aA=0.

Then there exists a constant ¢ depending only on A such that

161] < c[|v]]
whenever
Af <w,
where || - || denote the Euclidean norm.

Theorem for posterior propriety Based on model (3.2) and (3.3), the likelihood

function is

m  n;

LB, R b, 35Q. W) = [[T] / Y, 8. Run) f(W,y Yoy, B.by, 50, 0Y,
i=1 j=1 YZJGYZJ]

where R;, b and X} are defined the same as in (3.4), and Y,; is a region of Yj;

such that Yi; = {Y;; : Ny [(Yie > 0)I{Qijx = 1} + (Yige < 0)I{Qijx = 0}]]Qi5}
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Considering the hierarchical priors (3.10), (3.8) and (3.9) for 7(b;, §;, pi| B, X7 5), the

joint posterior distribution is given as

Tr(ﬁ7R17b767p7 Ez‘Qu W) X L(/B7R17b7 2;’Q7 W)Tr(ﬁrth?(supa 2;)7

where 6 = (51a e 76m)/7 b= (pla e 7pm>/ and 7T(/67 R17 b7 57p’ 2;) = H:il W(IB>7T(R7L711>X

7(bil6s, B, X7 95) (i |ps)m(ps)™(27 92). Then the posterior distribution is integrable if
and only if

A= / L(/Ba R17 b7 E;|Q> W)W(/Ba Rla b> 5,p, 2;>d/8dedbd5dpd2; < Q. (78)
The following theorem gives conditions for A to be finite.

Theorem 2. Let hij; =1 if yij: = 0 and hyj; = —1 if yij: = 1, where y,;;+ 1s the t-th
element of Yy; in (5.2). Write X{;; = (w’{;j, e ,:c’{;j)’ and x3;; = hij @155, where
is the any row of Xyij. Let Iis) denote the indicator function such that Iis) = 1 if S

is true and 0 otherwise. Assume that the following conditions are satisfied for any i

(i=1-,m)

(Ty) n; > T + 1, where n; is the number of subjects in group (treatment)
i

(To) >0 Xy X1y and 70, X Xy, are of full rank;

(Ts) X3, is of full rank, where X}, = (X7, - Xfmz) ;
(

Ty) There exists a positive constant vector l such that I’ X7; = 0.
Then the posterior distribution is proper, i.e., A < oo from (7.8).

Conditions (77) — (73) are easily verified for a given dataset. Condition (7)) can
be verified using a simple technique discussed in Roy and Hobert (2007). the proof

follows.
Proof of Theorem 2

We first focus on the conditional distribution of WY and the prior for the association

matrix B between W and Y. Let n = [ f(W]Y,3,b, X3)7(b|d, 3, X3)dB2d32% and
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Z;; = W;; — Cy;b;. Integrating out B,, we have

m = [ WY .56, £5)x(018.8.5;)8:
_ it - T ) 1 — “ ! 1
=(2m)” 2 H X0l 2 expq — 3 Z Z (Zij - X2z‘j/32> X520 (Zij - Xzz‘gﬂz) dB2
i1 i =1
2= T i " _ g 1 - /v —1
=(2m) 2 H X7l 2 expq — 5 Z Z 23599 Zij
i=1 VA

1 e \ .
P { B 5 Z Z (’BzXészz 22X2z]ﬂ2 2ﬂ2X£'LjEZ 22 ) }d'@2
=1 j=1

N|=

Z Z X21]2;2 X22]

LS T Gy 1 & -
=(2m) 2 H |3 00| 2 exp{ 5 ZZZ/ % 22 }
Py ‘=

=1 j=1 =1
exp{ <sz2wzj22 Z]) <ZZX21JE:22X2’J> ( ZXng:QQ %J>}
=1 j5=1 =1 j5=1 =1 j5=1
_1
—(om) pHrzmh 33X, X
i=1 j=1

1 m N/ — A
(B st
i=1 j=1
ZZXQWESQ X2w

=1 j=1

exp{ - %tr[ég (z X2wﬁ2) ( X%ﬁQ) 2;*22] }
ﬁ [|2z 22|~ B exp{ - %tr [SZE:;;} }} )

=1

N

_E;’;l n;T—p ng
=(2m) 2 H poy 22‘
=1

N

m

Z Z XQZJZZQ XQZ]

i=1 j=1

Z171,Tp

=(2m)~

(7.9)

2 i -1 m n; * n;
where 3, = (Zi:l Zj;l X535 X2w> (Zi:l Zj:l 213222 ij) and S; = Zj:l (Zw
~ ~ !/
XQZ']‘,82> (Zij — X2ij62> . Note that here S; is the function of X7,,, B and B;. By

Lemma 1, we obtain

=

<X

p
2

[S14S)

<7

Z Z XQZ]ESQ le]

=1 j5=1

where ), is the smallest eigenvalue of > )% > %% | X, 335, ' X;; and 7 is some positive

7



value such that A\, > 79 > 0. By Lemma 2,
T T
tr(Si=i) > Z Aot (SON(ZE0) = Amin (1) 30 M(Bizn) 2 70 D M(Sia),
k=1 k=1
where 7, = mmzr22 BB )\mm(Sl). From (73) and (73), we have n; > T and S; is
positive definite with 0 < |S;| < co. Hence under (77) and (73), it is obvious to see
that 0 < A\pin(S;) < oo and 0 < 7; < 0.

Then,
1 i 1« L
exp{ — Etr (Si2222>} < exp{ — 5T ; )\k(Efm)}
1 -1 1 )
= exp { - §Tit1" (23;22)} = exp { - 5 (TzITxTEZ 22) } (7.10)
= exp { — 1tr<z zZ]zUEfm)} = exp { - = Z zw QQzW},

where zj; is an any constant vector satisfying " i1 z”zw Tilrr.

Substituting (7.10) into (7.9), we have:

0= / F(WIY,B.b,53)d6s

T
_Zig T _p
< (2m) 2T H |35 00| ¥ exp{ -5 Zzzg 22’21]}]

_SymT _z _(y=T-1)4+T+1 1 .
= (2m) > T 2H pagy ? eXP{‘é“[(sz 1])2122i| }] :

Then,
n= [ mas; <
=1 T _ (=T-1)4+T+1 1 . i}
(o / I | a5 e { ol (S o) 3] o
— n—1T—1
< MOH ‘ Zzl] 2} Sz (here - - > () (2 =1, ,m) based on (T1))-
=1 =

So n is bounded from above by some constant, say M, i.e.
n < M. (7.11)
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By (7.8) and (7.11),
s [[[ Y16 Ru)dgidRidY | (el8)n(6lp)n(p)dbisip
[YeYq]
= Ml//[YEYQ]f(Y|51,Rl)dﬁldR1dY/W(b\é)ﬂ(é\p)ﬂ(p)dbdédp.

Let n* and n** denote [ 7(b|d)7(8|p)7(p)dbdddp andff[YGYQ} fY|B1, Ry)dB1dR,AY

respectively. It is obvious that
n' = /W(b[d)ﬂ(é]p)ﬂ(p)dbdédp < 00.

Since m(b|d), m(d|p) and 7w(p) are proper, so is w(b, d,p). Now we just need to show
that n** is integrable, i.e. ™ < oco.

Let Y;; = (Y7

1,00+, Yp) be independent random variables such that

YZ;|R¢,11 ~ N(O, Ri,ll);

that is, given R; 11, Y;} is normally distributed with mean 0 and variance R;11. Let

S =112, I1}%, Sij denote the set [Y € Y], and put
Sij = Sij1 X Sijz X+ X Sy,
where Sz’jt = [Y;jt € YQijt] (t =1,-- ,T) Then

N = // f(Y|B1, R1)dB1dR Y
[YGYQ]

m g

:/[HH/SM.../SUT F(Y|B1, R.)dY;|dB.dR, (7.12)

i=1 j=1

_ /L(gl,Rl\Y)dﬁlde,

where L(B1, R1|Y) is the likelihood function associated with (3.2). We can rewrite

it as

L(B1, R\|Y) = E{ly: 4 x5, 1<izmi<j<n) } = By 1au,08e8,01<t<m1<i<m,1<<

(7.13)



It is easy to see that

Y5

e e € Sije, L <t < T 1 <di <m, 1< j <y

= () (D5 + @By < 0¥ = 0,1 <i <m, 1< j < U

1<t<T (7.14)
[V, + @By = 0, Yo = 1,1 <0 <m,1<j <))
Clhijtx1ijeBr < —hijpYie, 1 <t <T,1<i<m,1<j<mnl=[X{6 <Y,

where Xik = (Xi,llv to 7X, )/7 Y* = (le*lv e 7Y17*mm) and Y;; = (Y;;'l’ T 7}/ZjT)

1mnm

Combining (7.12), (7.13), and (7.14), we have
= / Ellix;pi<y}dBrd Ry
Therefore, by (T3), (T4) and Lemma 3

p
< /E{fu,ausf:lywn}d&de < C/E{ max HYJH} dR,

1<i<m,1<j<n;

m  n; T T
< c/ZZZEWijtV’de < C/ZE(Ude
) t=1

i=1 j=1 t=1

< 00,

where Ry = (R, -+, R, ;)" O

Proof of Theorem 1

By the candidate transformation T given in (4.4), and (A.1) and (A.2) in the proof
of Proposition 2, drawing Y;, R; and B; given 3 is equivalent to drawing Y;*, ¥, and
By first, and then translating back to Y;, R; and B; through T. R; = DZ-_llIliDi_1
will be used as the candidate value. It is accepted in the Metropolis Hastings step

with probability a;. The a; can be derived as follows.

Let m; denote the prior or full conditional distribution of R and my denote the corre-

sponding candidate prior or proposal density. Then

m(Ri|Y;, B) oc m(R;) f(Yi] B, R;)

10



and

m(Ri|Y:, B) o< mo(R;) f(Yi] B, R;),
where m (R;), mo(R;) and f(Y;|8, R;) are given by (3.7), (4.5) and (3.2), respectively.
The probability of acceptance at iteration k£ + 1 is

_ { ™ (Ri|Y;, B)ma(R (k)\y;ﬁ)} - { 771(R¢)7r2(R§’“))}
«; = min ® =min< 1, 0
‘(R |Y, B)m(Ri|Y, B) m(R")m(R,)
m(R)

(k) )%
min< 1, ———= 2By ) = min 1,“—';
T (R;) |R;|™=2

= min {1,eXp (%(log |R;| — log ’ng)‘))} ;

:1

where ¢; = 1. O

Web Appendix III

We conducted several simulations to examine the efficiency of our algorithm to sample
from a truncated multivariate normal distribution. In the following, we assume that
Y has a truncated normal distribution with mean 0 and covariance ¥. For one of

the simulations, we assumed the truncation region was U; = {y € C* : y; > 0,95 <
5 7 2 0

7 5 134 0.14
2 134 1 0.13
0 014 0.13 0.2

0,y3 < 0,y4 >0} and 3 =

We ran two chains of 2,000 iterations using the LD-A and the R-A, respectively
to sample from the distribution of Y. Estimates of the lag-n autocorrelation are
presented in Table 1. The results show that the decay of autocorrelation of each
element of Y is much faster in the LD-A than in the R-A. Similar results were

obtained using other choices for ¥ and Uj.
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Table 1: Lag-n autocorrelation estimates of Y7, Y5, Y3 and Y, drawn from the TMVN
distribution using the LD-A and the R-A

LD-A* R-A*
ey v, v i v ovwm v
1 0.10 0.07 -0.05 0.01 098 0.97 097 0.95
2 0.03 -0.04 0.02 -0.00 0.94 090 0.92 0.89
3 -0.01 0.01 -0.04 0.02 0.88 0.86 0.87 0.83
4 0.02 -0.03 0.00 -0.00 0.82 0.79 0.77 0.77
5 -0.00 -0.02 -0.02 0.03 0.77 0.76 0.75 0.73
6 -0.03 0.00 0.03 -0.00 0.72 0.70 0.70 0.69
7 0.04 -0.00 -0.00 0.02 0.69 0.68 0.67 0.67

10 -0.00 0.01 -0.02 -0.00 0.65 0.62 0.64 0.62
15 0.00 0.00 -0.00 0.01 0.50 047 047 0.45

20 0.01 -0.01 0.00 0.00 042 0.40 0.42 0.38
* LD-A: The algorithm in Section 5; R-A: The algorithm from Robert (1995)

Web Appendix IV

Here we provide details on computation of components of the DIC for the joint models.

Note that the kernel of the DIC can be written as

DIC = _4E0|Qobs7Wobs (IOg f(Qobsa Wobs|0)) + 210g f(Qob& Wobs|§)- (715)
Details on the computation of f(Qops, Woss|6@) and Eoiq,,..w.,.(log f(Qobs, Weps|0))
are given below.

To compute f(Qops, Wops|0), we need to evaluate the following integral,

— 1 1
fQoszosa = —exp{__‘/;s_Xos/B,Eols‘/:)s_Xos/B}dY;sa
( b b. ’ ) AQObS \/%|20b8|% 2( b b ) b. ( b b ) b

(7.16)

where Ag,,. is the truncation region of Yous, Vops = (Yobs, Wobs), Zops is the covariance
matrix of Vs and X is the matrix composed of the rows in the design matrix in

model (3.1). We can calculate this integral using Monte Carlo integration.
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Next, we address the computation of the first term. Assume that 8¢ is a sampled
value from the posterior distribution 7(6|Qops, Woss). Then Egq,,. w,,. (108 f(Qobs; Wors|0))

can be estimated as
E9|Qob5 Wobs (10g f(Qobsa obs|0 G Z lng Qob57 obs’e )

We can use importance sampling techniques to compute each term in the sum as

follows. We have

f(Qob37 Wobsle(g)) = / f(}/obm Wobsle(g))dy;bs
AQobs

Y

Vb5, Wops| 09 = Yobs, Wops|019)
- [ LR Tl iy, Wifg)ava, = b [T W80
Aq b f(YOb87 Wobs|0) f(Yobsa Wobs‘g) e

(7.17)

where Ag,,. is the truncation region of Yo, and f(¥ops, W ,5|0) is the joint likelihood

at @ = 0. The expectation in (7.17) can be estimated as

E f(Y;bs’ WObS‘H(g)) :| _ Z f Y:)%’Z ) obs’e(g ) Iy
f(Y(31787 Wobs|0) QObS k 1 Y(k; ob3|0) Qobs’

obs

using the same Monte Carlo sample we used to compute the integral in (7.16).
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