ARTICLES Dash et al.

buffer) were added in steps to yield 0-2 equiv (S.I.). NMR spectra were recorded immediately after individual titration steps.

Conclusion

In summary we have identified bis-phenylethynyl amide derivatives as a potent G-quadruplex binding small molecule scaffold. These ligands show very good binding affinity, excellent quadruplex:duplex selectivity and also promising discrimination between intramolecular promoter quadruplexes. Our data suggests, such compounds induce parallel G-quadruplex structure and have potential for G-quadruplex groove recognition. We believe that the modes of G-quadruplex recognition other than via the G-tetrad stacking should be seriously considered for second generation ligands. The biological properties of these molecules are currently under investigation.

Acknowledgment. We thank the BBSRC for project grant funding, Cancer Research UK for programme funding and the European Commission (Marie Curie Incoming Postdoctoral Fellowship to J.D. for funding). S.T.D.H. is a recipient of a Netherlands Ramsay Memorial Fellowship and a Human Frontier Science Program Long-term Fellowship (LT00798/2005). We thank Raphaël Rodriguez and Zoë A. E. Waller for useful discussions relating to the SPR experiments.

Supporting Information Available: CD, UV and NMR spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

JA8046552