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S1. DERIVATION OF HYDRODYNAMIC EQUATIONS
S1.1 Microdynamics

As outlined in the main text, the microdynamics of a collection of Stokesian swimmers

is given by
e = U(I"La),
atrSoc - u<rSa)a (1)

where ry, and rg, denote the position of the large and small sphere with respect to a fixed
coordinate system The flow velocity u(r) of the fluid at position r is determined by the

solution of the Stokes equation
TIVQU (I‘) - Vp + Factive - Frandom =0 s <2>

where Fooive = Yo fUo[0(r —1rs) —0(r —rs,)] is the force density due to the active
forces exerted by the swimmer and F,.qng0m = >0 [55(2&)5 (r—rre) +&5(1)0 (r — I'sa)} is the
random force density associated with the effect of fluid fluctuations on the swimmer. These
random forces have zero mean and correlations ( gz(t)fg;(t’ )) = 2Co000'kpT00;i006(t —t')
with 0,0’ = L, S and (, = 67na, the friction of a sphere of radius a, in a fluid of viscosity
n . Further, we assume that the fluid is incompressible, i.e., V -u = 0. From this set
of equations, we eliminate the fluid and derive equations of motion for the hydrodynamic
center and orientational coordinate of each swimmer (Eq.(2.8) and (2.9) in the main text).
In this subsection we outline the key steps of this derivation.

Let us begin by considering one isolated swimmer. In this case, the Stokes equation is

readily solved to obtain the flow field at the centers of the large and small spheres as
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The equations of motion for the hydrodynamic center r¢ = % and the orientation
U = (rp —rg) /¢ of the swimmer are then given by

or® = v +€7(t) (5)

@19 =W XU , (6)

w =V X ER(t> ) <7>
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where

B f Aa
Yo = 8l a (8)

is the self-propulsion velocity, with Aa = a; — as and @ = (ar + ag)/2, and
€ — L (eh 4 &8) 4 (Bt vt [an€5(0) + as€ (1) (9)
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with ¢, = 8mnf and ¢ = 6mna = (1 +(s)/2. Also, from the variance of the noise at the large

and small spheres, the two-point correlation functions of €7 and &7 are readily obtained as

(0 (t)) = [Dyoivy + Do (0 — oaiy)| 6 (t—1) (11)
(efef) = Droyo (t — ) (12)
with
- i ] St o
D, = k”Z_T 1+ 196“’235} + %CiT e (14)
Dy — Q;ZQT [(Ce EL<L>2+ (< Escﬂ | (15)

Thus an isolated swimmer in a fluid propels itself at velocity vy along its axis and undergoes
translational and rotational diffusion due to fluid fluctuations. Note that hydrodynamic
interactions due to the noise at the head and the tail of the swimmer render the diffusion
process anisotropic. The effective noise on the swimmer corresponds to that of a rigid
non-spherical Brownian particle.

Next, we repeat the same procedure for N swimmers in the fluid. To make the calculation
analytically tractable, we introduce two approximations. First, we neglect the hydrodynamic
interaction due to the noise on different swimmers, which is well characterized in the liter-
ature of interacting Brownian particles [2|. In addition, to leading order, these interactions
will scale as kBTT <7~?‘2)2’ while those due to the active forces scales as ? <T?2>2, and hence is
subdominant in the regime of large Péclet number of interest here. Secondly, we carry out

a multipole expansion of the hydrodynamic couplings among swimmers. To illustrate this,

we consider the flow induced on swimmer 1 by the active forces generated in the fluid by



swimmer 2. The flow field at the head and tail of swimmer 1 is given by

asl . . 14 . . .

u; (rp1) = f l@“ <r1c2 + 2—% (0 — V2)> — Uy <r1cz + 27 (astn +ar, l/2)>] Vja (16)
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U; (rSl) = f ﬁij ryy — ﬁ (CLLl/l + CLSVQ) — ﬁz ryy — % (1/1 — 1/2) Vio . (17)

We carry out a multiple expansion of the flow field given in Egs. (16) and (17) about the
separation of the hydrodynamic centers of the two particles r$, to order (%)4, ie., to
octupole order. Carrying out this procedure systematically gives us 6/N coupled Langevin
equations describing the "microdynamics” of the active particles given in the paper and

repeated here for completeness,

R 1
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atﬁlzwl X 191 s (19>
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Wy = =_-Ti2 + gh(t), (20)
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where the hydrodynamic forces and torques are given by
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with ¢; and ¢y numerical constants and
9
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ay = Z fla (25)
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and
. L 1
Si(T12) = [hzzﬂ“uk — gékl}; (28)

Siji (F) = 5777 — (87 + Ol + 0457k) (29)

Sijel (F) = 77,1 — (845771 + STy + Oi 571 + OuliTy + 0Ty + 0t j7y)
1
+5 (045081 + dir0j1 + 6:01;) (30)

In the above expressions the parameters a; scale as (ags + ar), while the parameters 3; scale
as (ayp —ag). So all the f3; terms vanish for a shaker. Further, each of the tensors S is a
spherically symmetric traceless tensor generated from the vector 7.

In order to make analytical progress, we simplify the above expression for the hydrody-
namic torque as follows. First note that the term with coefficient as is long ranged and
is the most important contribution in the long wavelength limit. This term is treated ex-
actly below. Next, it will be shown below that the §; term in the force yields convective
nonlinearities ~ PV P in the hydrodynamic equation for the polarization. The coefficients
of these terms will acquire corrections from the quadrupolar part of the torque (the terms
proportional to ;). For simplicity, we neglect this quadrupolar contribution to the torque
in the following analysis. Finally, we need to go to octupole order in the multipole expansion
of the torque to get the contribution of the form ~ (2 x ) that leads to long-ranged build
up of polar order in the system. For tractability, we replace the angular kernel resulting from
the derivatives of the Oseen tensor in this term by a lower order form that still preserves the
critical properties of spherical symmetry and incompressibility contained in the full kernel.

Implementing these approximations, we get the following expression for the hydrodynamic

torque,
Ti2s = —Q9 (191 X f‘12)i TTSjkl (f'12) ﬁ1jﬁ2kzﬁ2l
12
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This simplified form of the torque is used in the remainder of the presentation.

S1.2 Statistical Mechanics

The nonequilibrium statistical mechanics of a system of overdamped Langevin equations

can be reformulated as a Smoluchowski equation for an N-particle phase space density,



C (rlc, ...T%;ﬁl,...ﬁ]\[;t) [1]. At low density ((¢/r12) << 1), we can approximate the N-
particle statistical mechanics as an effective theory that captures the interactions among the
particles in mean field. In this limit the dynamics is described in terms of a one-particle

distribution function, ¢ (ry, £y, t), that satisfies a one-body Smoluchowski equation, given by

1 1 0
(9té—i— Uoﬁl . Vrlé = —EV“ . (<F12> é) e <l>1 X ) . <T12> ¢

e S
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+(Dydfe + DLd%¢é) + D ( 81>1> ¢, (32)
where
(X)) = / drs / iy X1a ¢ (va, D, 1) . (33)
and Oy = 01-Vy, and 0y, = (6;5 — hith;) Or ;- The mean field force and torque are given by
(Fios) = an K (r1,t) = BiK [ (r1,1) (34)
with
K[ (ry,t) /dr2 12’ Sjk (F12) ¢ (ra, t) Qji (ra,t) | (35)
K (vt / dr2 i (F12) € (12, 1) Py (x2,1) (36)
and
(T121) = —EimnP1m D1k K} (v1,1) + Bsimn i I (11, 1) (37)
where A
Kij (e, 0) = [y 5 S (F1a) o (02,1) Qut (02,1) (33)
and
K7 () = [ drgézSnk (f12) ¢ (£, ) Py (1, 1) (39)

In the above expressions, we have expressed the mean field forces and torques in terms
of nonlocal kernels of the hydrodynamic fields of interest namely, the density, ¢ (r,t), the
polarization, P (r,t), and the nematic order parameter, Q (r,t), defined as moments of the

one particle distribution,

c(r,t) = / v & (r,0,t) (40)

vve(r,o,t) (41)

Q(r’t>:c(r )

o (m; _ 35) é(r,0,1). (42)
The context of such a representation is discussed in the next section.
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S1.3 Hydrodynamics

The next step is to derive hydrodynamic equations that capture the dynamics of the
system at large length and time scales. On hydrodynamic scales, the dynamics of the sys-
tem can be described in term of conserved quantities and broken symmetry fields. The
conserved quantities of a suspension in the Stokes regime are the total density of the sus-
pension (assumed constant in the incompressible limit of interest here), the concentration ¢
of swimmers, and the total momentum of the suspension. Since we have eliminated the fluid
from our description by solving the Stokes equation and recasting the effect of the solvent
in the form of hydrodynamic interactions among the swimmers, the only relevant conserved
quantity is the density of swimmers, ¢ (r,t), defined in Eq.(40). In addition, there are two
symmetries that can be dynamically broken. First, the rotational symmetry of the system
can be broken if the active particles align to form an ordered state that is invariant under
the interchange of the head and the tail of all the particles. This results in nematic order-
ing characterized by the nematic order parameter Q, defined in Eq.( 42). Alternately, the
rotational symmetry can be broken so that the system develops polar ordering, which also
corresponds to spontaneous flow of the active particles in the broken symmetry direction.
This is described by the polarization vector order parameter, P, defined in Eq.(41). In the
long time regime, we can construct hydrodynamic equations for the slow variables by taking
the corresponding moments of the Smoluchowski equation and assuming that the dynamics
is "normal", i.e.,

¢(r,,t) — é(r, Dle(r,t),P(r,1),Q(r,t)) . (43)

In other words the one particle distribution depends on time only through the hydrodynamic
variables. This is traditionally called the functional assumption underlying hydrodynamics
[3]. There are several well developed techniques to construct such a functional. For analytical

tractability, we use the simplest closure traditionally used for anisotropic fluids, namely

é(r,,t) = CS;) 1+319-P(r,t)+125 (ﬁﬁ—éd) :Q(r,t)}, (44)

that expresses the one-particle distribution as a linear functional of the hydrodynamic vari-
ables. Using this closure, we obtain hydrodynamic equations of for each of these variables.

Before giving the explicit expression for each of these equations, it is useful to first discuss



their structure. Generically these equations have the form

Ol = [/ dr’Kgf‘y) (r =) ys ()| yy (r) + 0V, CDy,
+Do¢0v2ya - DR (1 - 5041) Yo (I’) (45)

where y, — {¢,P,Q} are the hydrodynamic fields, K 57 ~ with m > 2, are nonlocal

Tm
kernels that capture the effects of hydrodynamic interactions, and Cg‘i) and D,, are param-
eters that govern convective couplings from self propulsion and diffusive effect due to noise,
respectively. The hydrodynamic equation are nonlinear and nonlocal, due the power-law
dependence of the hydrodynamic interactions on the swimmers separation. It is precisely
these nonlocal terms that give rise to the peculiar nature of fluctuations in a suspension of

active particles.

In detail, the hydrodynamic equations are

= — 2K (r, 1) — @ B2 (¢ c(r
e (r,t)+ vV - (cP(r,t)) = -V, [ z K™ (r,t) z K™ ( ,t)) ( ,t)]
; (D) +2Dy) Vie(r,t) + (D) — D1)3id;eQs; (r,t) (46)
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OyeP; (r,t) + anj(CQij)+1§)8¢C:—Vr~[(alKFl(r,) f}KFz( ))cPi(r,t)]
+5(DH—DL)81~(V-CP)+ (

Dy +4D.) VcP; — DycP,

2 AR (1) = K7} (x,t) = 04 K7 (v, 1)] ePj (x,1)

5(82
PR () (Qu () + 26, (47)
Cg J J 3 J
21)0 a1 g B1 1,1
OrcQij+ [0; CP] =—V,- ?K (r.t) — C —K" (r,1) | cQy (r,1)
2 1 9 2 2
T (D|| L) <aiaj - g@'jv ) cto (D|| - DL) Ok, [aiCij + 0;¢Qir — g%‘alCle
1 ) 2000 [, ST Py . ST
+ (D +6D1) V?cQij — ADpeQi; — e (K7 ()] e = (K™=-cP)S" (48)
where [Yij]ST denotes the symmetric traceless contraction of the tensor Yj;, i. [Yij]“gT =

(1/2)(Yi; + Yji) — (1/3)6;;Yie. Finally, we have neglected (Q?) terms in the contribu-
tion form the nematic part of the torque to the equation for the alignment tensor. These
terms have a very complicated angular dependence; at long wavelength they give convective

nonlinearities quadratic in Q and linear in gradients in the hydrodynamic equations.
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In the main body of the paper we focus on the linearized form of the hydrodynamic
equations, obtained by expanding the hydrodynamic fields y, about their homogeneous
values 42, with dy, = y, —9°. Introducing a Fourier representation 69, (k) = [. e**dy, (r),
the nonlocal terms take the form [% 3y (—k) 673 (k)} y9. Since we are interested in the long
wavelength behavior, we expand the kernels as K ~ K© + ikK® + ... and retain terms
up to quadratic order in k. This procedure, when carried out in each of the homogeneous
states, yields the linearized hydrodynamic equations discussed in the paper. Finally, one
can radily verify that for the long ranged part of the force and torque, the kernels K** and
K™ go as k¥ in the wavevector and hence are solely responsible for the scale free instabilities
identified in the main text of the paper.

The hydrodynamic equations linearized about the isotropic state are

0y0¢c = alc()é@”” + ikUOCO(Sﬁ” — k*Déc (49)
0,0P| = —Dpo Py + ik;—oéE— 2D, P, (50)
Co
and
5. 0C
90Q) = —4DroQy = K" Dy~ (51)
0,0Q) L = —4DRoQ )L + Q)L (52)
where
AT e 3T c
51:? 20 :Ef(a[,“—afs)fzq (53)
Dy +2D
p_ 2 +3 L (54)
2 Dy +4D
D, =(Dy— D)+ === (55)
5 5
4
Doy = 5 (D1 = D1) (56)
_ dmteg 200 9mey
Qg 15 5¢ 75<f(a5+aL) (57)
The hydrodynamic equations linearized about the an orientationally ordered state are
_ k2 k‘ k2 R . — k2
- - a . _ a -
008 — ivock) 0 = = ([1513! - 12?“ + 1] 0+ 2 [15]{:! + 1] (k. - 6n)) k, + fkfgan
—D, .k kj6¢ — (Ds — Dy) k| - 6n — Dyk*0n (58)
where
2
D,.=D,— D, = E(D” — D)) (59)



and
_ Dy+4D,
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The stability analysis of these equations is reported in the main text of the paper.

D, (60)

S3. RELATIONSHIP TO PHENOMENOLOGICAL HYDRODYNAMICS

In this section, we show that the hydrodynamic equations obtained here have the same
formal structure as those proposed in the literature on a pure phenomenological basis. For
simplicity, we restrict ourselves to the equations for the density and polarization fields,
although it is straightforward to carry out the derivation for the general case.

Phenomenological hydrodynamic equations for active suspensions are generically written

in the form

Oic+ V- (cu — pcP) = D;V3c (61)
K, — K. K
and
2 PZP] / 11 02

c
with V.-u =0, w;; = %(@-uj — 0ju;) and u;; = %(@-uj + 0ju;). All the coefficients in the
equations are phenomenological constants.

The Stokes Eq. (63) can be formally solved (with the condition V-u = 0). In the absence

of external forces in an infinite system, the solution is given by

wilr, 1) = /dr/ﬁij( r—r) [—a@,’ﬂpj (r'acgllz(r’,t)

+ B0, P (x', 1) + 30 Py (X', 1)

64)
where 0 (r) = ﬁ (07 + 7;7;) is the Oseen tensor and 0’ denotes gradients with respect
to r' . We then eliminate the flow velocity from the hydrodynamic equations by inserting
Eq. (64) in Egs. (61) and (62). This yields a set of nonlocal hydrodynamic equations that
have precisely the structure of those obtained here by eliminating fluid flow from the outset

in term of pairwise hydrodynamic interactions. It is then easy to verify that the linearized

form of the equation is identical to that given in the main body of the paper for each
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homogeneous state.
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