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S1. DERIVATION OF HYDRODYNAMIC EQUATIONS

S1.1 Microdynamics

As outlined in the main text, the microdynamics of a collection of Stokesian swimmers

is given by

∂trLα = u(rLα),

∂trSα = u(rSα), (1)

where rLα and rSα denote the position of the large and small sphere with respect to a fixed

coordinate system The flow velocity u(r) of the fluid at position r is determined by the

solution of the Stokes equation

η∇2u (r)−∇p + Factive − Frandom = 0 , (2)

where Factive =
∑

α f ν̂α [δ (r− rLα)− δ ( r− rSα)] is the force density due to the active

forces exerted by the swimmer and Frandom =
∑

α

[
ξL

α(t)δ (r− rLα) + ξS
α(t)δ (r− rSα)

]
is the

random force density associated with the effect of fluid fluctuations on the swimmer. These

random forces have zero mean and correlations 〈ξσ
αi(t)ξ

σ′
βj(t

′)〉 = 2ζσδσσ′kBTaδijδαβδ(t− t′) ,

with σ, σ′ = L, S and ζσ = 6πηaσ the friction of a sphere of radius aσ in a fluid of viscosity

η . Further, we assume that the fluid is incompressible, i.e., ∇ · u = 0. From this set

of equations, we eliminate the fluid and derive equations of motion for the hydrodynamic

center and orientational coordinate of each swimmer (Eq.(2.8) and (2.9) in the main text).

In this subsection we outline the key steps of this derivation.

Let us begin by considering one isolated swimmer. In this case, the Stokes equation is

readily solved to obtain the flow field at the centers of the large and small spheres as

ui (rL) =
fν̂i

ζL

− fν̂i

4πη`
+

ξL
i

ζL

+
1

8πη`
(δij + ν̂iν̂j) ξS

j (t) , (3)

ui (rS) = −fν̂i

ζS

+
fν̂i

4πη`
+

ξS
i

ζS

+
1

8πη`
(δij + ν̂iν̂j) ξL

j (t) . (4)

The equations of motion for the hydrodynamic center rC = ζLrh+ζSrt

ζL+ζS
and the orientation

ν̂ = (rL − rS) /` of the swimmer are then given by

∂tr
C = v0ν̂+ξT (t) , (5)

∂tν̂ = ω × ν̂ , (6)

ω = ν̂ × ξR(t) , (7)
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where

v0 = − f

8πη`

∆a

a
, (8)

is the self-propulsion velocity, with ∆a = aL − aS and a = (aL + aS)/2, and

ξT
i =

1

2ζ

(
ξL
i + ξS

i

)
+

1

2aζ`

(δij + ν̂iν̂j)
[
aLξS

j (t) + aSξL
j (t)

]
, (9)

ξR(t) =
1

`

[(
1

ζL

− 1

ζ`

)
ξL −

(
1

ζS

− 1

ζ`

)
ξS

]
, (10)

with ζ` = 8πη` and ζ = 6πηa = (ζL+ζS)/2. Also, from the variance of the noise at the large

and small spheres, the two-point correlation functions of ξT and ξR are readily obtained as

〈
ξT
i (t)ξT

j (t′)
〉

=
[
D‖ν̂iν̂j + D⊥ (δij − ν̂iν̂j)

]
δ (t− t′) , (11)

〈
ξR
i ξR

j

〉
= DRδijδ (t− t′) , (12)

with

D‖ =
kBT

ζ

[
1 +

9

4

aLaS

`2

]
+

4kBT

ζ`

aLaS

a2
, (13)

D⊥ =
kBT

ζ

[
1 +

9

16

aLaS

`2

]
+

2kBT

ζ`

aLaS

a2
, (14)

DR =
2kBT

`2ζ2
`

[
(ζ` − ζL)2

ζL

+
(ζ` − ζS)2

ζS

]
. (15)

Thus an isolated swimmer in a fluid propels itself at velocity v0 along its axis and undergoes

translational and rotational diffusion due to fluid fluctuations. Note that hydrodynamic

interactions due to the noise at the head and the tail of the swimmer render the diffusion

process anisotropic. The effective noise on the swimmer corresponds to that of a rigid

non-spherical Brownian particle.

Next, we repeat the same procedure for N swimmers in the fluid. To make the calculation

analytically tractable, we introduce two approximations. First, we neglect the hydrodynamic

interaction due to the noise on different swimmers, which is well characterized in the liter-

ature of interacting Brownian particles [2]. In addition, to leading order, these interactions

will scale as kBT

ζ

(
`

rC
12

)2

, while those due to the active forces scales as v2
0

ζ

(
`

rC
12

)2

, and hence is

subdominant in the regime of large Péclet number of interest here. Secondly, we carry out

a multipole expansion of the hydrodynamic couplings among swimmers. To illustrate this,

we consider the flow induced on swimmer 1 by the active forces generated in the fluid by
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swimmer 2. The flow field at the head and tail of swimmer 1 is given by

ui (rL1) = f

[
Oij

(
rC
12 +

aS`

2a
(ν̂1 − ν̂2)

)
− Oij

(
rC
12 +

`

2a
(aSν̂1 + aL ν̂2)

)]
ν̂j2 , (16)

ui (rS1) = f

[
Oij

(
rC
12 −

`

2a
(aLν̂1 + ˆaSν2)

)
− Oij

(
rC
12 −

aL`

2a
(ν̂1 − ν̂2)

)]
ν̂j2 . (17)

We carry out a multiple expansion of the flow field given in Eqs. (16) and (17) about the

separation of the hydrodynamic centers of the two particles rC
12 to order

(
`

r12

)4
, i.e., to

octupole order. Carrying out this procedure systematically gives us 6N coupled Langevin

equations describing the ”microdynamics” of the active particles given in the paper and

repeated here for completeness,

∂tr
C
1 = v0ν̂1 +

1

ζ
F12+ξT (t) , (18)

∂tν̂1=ω1 × ν̂1 , (19)

ω1 =
1

ζ`2
τ12 + ξR(t) , (20)

where the hydrodynamic forces and torques are given by

F12 = α1
r̂12

r2
12

Sjk (r̂12) ν̂2j ν̂2k + β1
1

r3
12

[̂r12Sjkl (r̂12) ν̂2j ν̂2kν̂2l − ν̂2Sjk (r̂12) ν̂2j ν̂2k] + O

(
`4

r4
12

)

(21)

and

τ12 = −α2 (ν̂1 × r̂12)
1

r3
12

Sjkl (r̂12) ν̂1j ν̂2kν̂2l + β2 (ν̂1 × ν̂2)
1

r4
12

Sjkl (r̂12) ν̂2j ν̂2kν̂2l

−5β2(ν̂1 × r̂12)
1

r4
12

Sjklm (r̂12) ν̂1j(ν̂1k + ν̂2k)ν̂2lν̂2m

+β3
1

r5
12

[
c1(ν̂1 × ν̂2)Sklmn (r̂12) ν̂1kν̂1lν̂2mν̂2n

+c2(ν̂1 × r̂12)Sklmns (r̂12) ν̂1kν̂1lν̂2mν̂2nν̂2s

]
+ O

(
`6

r6
12

)
(22)

with c1 and c2 numerical constants and

α1 =
9

4
fa` (23)

β1 = − 9

16
f`2 (aL − aS) (24)

α2 =
9

4
f`3a (25)

β2 = − 9

16
f`4 (aL − aS) (26)

β3 =
9f`5

16a
(aL − aS)2 (27)
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and

Skl(r̂12) =
[
r̂12kr̂12k − 1

3
δkl

]
, (28)

Sijk (r̂) = 5r̂ir̂j r̂k − (δjkr̂i + δikr̂j + δij r̂k) , (29)

Sijkl (r̂) = 7r̂ir̂j r̂kr̂l − (δij r̂kr̂l + δklr̂ir̂j + δikr̂j r̂l + δjlr̂ir̂k + δjkr̂ir̂l + δilr̂j r̂k)

+
1

5
(δijδkl + δikδjl + δilδjk) . (30)

In the above expressions the parameters αi scale as (aS + aL), while the parameters βi scale

as (aL − aS). So all the βi terms vanish for a shaker. Further, each of the tensors S is a

spherically symmetric traceless tensor generated from the vector r̂.

In order to make analytical progress, we simplify the above expression for the hydrody-

namic torque as follows. First note that the term with coefficient α2 is long ranged and

is the most important contribution in the long wavelength limit. This term is treated ex-

actly below. Next, it will be shown below that the β1 term in the force yields convective

nonlinearities ∼ P∇P in the hydrodynamic equation for the polarization. The coefficients

of these terms will acquire corrections from the quadrupolar part of the torque (the terms

proportional to β2). For simplicity, we neglect this quadrupolar contribution to the torque

in the following analysis. Finally, we need to go to octupole order in the multipole expansion

of the torque to get the contribution of the form ∼ (ν̂1 × ν̂2) that leads to long-ranged build

up of polar order in the system. For tractability, we replace the angular kernel resulting from

the derivatives of the Oseen tensor in this term by a lower order form that still preserves the

critical properties of spherical symmetry and incompressibility contained in the full kernel.

Implementing these approximations, we get the following expression for the hydrodynamic

torque,

τ12i = −α2 (ν̂1 × r̂12)i

1

r3
12

Sjkl (r̂12) ν̂1j ν̂2kν̂2l

+β3
1

r5
12

εijkν̂1jSkl (r̂12) ν̂2l (31)

This simplified form of the torque is used in the remainder of the presentation.

S1.2 Statistical Mechanics

The nonequilibrium statistical mechanics of a system of overdamped Langevin equations

can be reformulated as a Smoluchowski equation for an N -particle phase space density,
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C
(
rC
1 , ...rC

N ; ν̂1, ...ν̂N ; t
)
[1]. At low density ((`/r12) << 1), we can approximate the N -

particle statistical mechanics as an effective theory that captures the interactions among the

particles in mean field. In this limit the dynamics is described in terms of a one-particle

distribution function, ĉ (r1, ν̂1, t), that satisfies a one-body Smoluchowski equation, given by

∂tĉ + v0ν̂1 ·∇r1 ĉ = −1

ζ
∇r1 · (〈F12〉 ĉ)− 1

ζ`2

(
ν̂1 × ∂

∂ν̂1

)
· 〈τ12〉 ĉ

+
(
D‖∂

2
‖ ĉ + D⊥∂2

⊥ĉ
)

+ DR

(
ν̂1 × ∂

∂ν̂1

)2

ĉ , (32)

where

〈X12〉 =
∫

dr2

∫
dν̂2 X12 ĉ (r2, ν̂2, t) . (33)

and ∂‖ = ν̂1·∇r1 and ∂⊥i = (δij − ν̂1iν̂1j) ∂r1j
. The mean field force and torque are given by

〈F12i〉 = α1K
F1
i (r1, t)− β1K

F2
i (r1, t) , (34)

with

KF1
i (r1, t) =

∫
dr2

r̂12i

r2
12

Sjk (r̂12) c (r2, t) Qjk (r2, t) , (35)

KF2
i (r1, t) =

2

5

∫
dr2

1

r3
12

Sij (r̂12) c (r2, t) Pj (r2, t) , (36)

and

〈τ12i〉 = −εimnν̂1mν̂1kα2K
τ1
nk (r1, t) + β3εimnν̂1mKτ2

n (r1, t) , (37)

where

Kτ1
nk (r1, t) =

∫
dr2

r̂12n

r3
12

Sjkl (r̂12) c (r2, t) Qjl (r2, t) , (38)

and

Kτ2
n (r1, t) =

∫
dr2

1

r5
12

Snk (r̂12) c (r2, t) Pk (r2, t) (39)

In the above expressions, we have expressed the mean field forces and torques in terms

of nonlocal kernels of the hydrodynamic fields of interest namely, the density, c (r, t), the

polarization, P (r, t), and the nematic order parameter, Q (r, t), defined as moments of the

one particle distribution,

c (r, t) =
∫

dν̂ ĉ (r, ν̂, t) (40)

P (r, t) =
1

c (r, t)

∫
dν̂ ν̂ ĉ (r, ν̂, t) (41)

Q (r, t) =
1

c (r, t)

∫
dν̂

(
ν̂ν̂ − 1

3
δ

)
ĉ (r, ν̂, t) . (42)

The context of such a representation is discussed in the next section.
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S1.3 Hydrodynamics

The next step is to derive hydrodynamic equations that capture the dynamics of the

system at large length and time scales. On hydrodynamic scales, the dynamics of the sys-

tem can be described in term of conserved quantities and broken symmetry fields. The

conserved quantities of a suspension in the Stokes regime are the total density of the sus-

pension (assumed constant in the incompressible limit of interest here), the concentration c

of swimmers, and the total momentum of the suspension. Since we have eliminated the fluid

from our description by solving the Stokes equation and recasting the effect of the solvent

in the form of hydrodynamic interactions among the swimmers, the only relevant conserved

quantity is the density of swimmers, c (r, t), defined in Eq.(40). In addition, there are two

symmetries that can be dynamically broken. First, the rotational symmetry of the system

can be broken if the active particles align to form an ordered state that is invariant under

the interchange of the head and the tail of all the particles. This results in nematic order-

ing characterized by the nematic order parameter Q, defined in Eq.( 42). Alternately, the

rotational symmetry can be broken so that the system develops polar ordering, which also

corresponds to spontaneous flow of the active particles in the broken symmetry direction.

This is described by the polarization vector order parameter, P, defined in Eq.(41). In the

long time regime, we can construct hydrodynamic equations for the slow variables by taking

the corresponding moments of the Smoluchowski equation and assuming that the dynamics

is "normal", i.e.,

ĉ (r, ν̂, t) → ĉ
(
r, ν̂|c (r, t) ,P ( r, t) ,Q

(
r, t

))
. (43)

In other words the one particle distribution depends on time only through the hydrodynamic

variables. This is traditionally called the functional assumption underlying hydrodynamics

[3]. There are several well developed techniques to construct such a functional. For analytical

tractability, we use the simplest closure traditionally used for anisotropic fluids, namely

ĉ (r, ν̂, t) =
c (r, t)

4π

[
1 + 3ν̂ ·P (r, t) +

15

2

(
ν̂ν̂ − 1

3
δ

)
: Q (r, t)

]
, (44)

that expresses the one-particle distribution as a linear functional of the hydrodynamic vari-

ables. Using this closure, we obtain hydrodynamic equations of for each of these variables.

Before giving the explicit expression for each of these equations, it is useful to first discuss
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their structure. Generically these equations have the form

∂tyα =
[∫

dr′K(α)
βγ (r− r′) yβ (r′)

]
yγ (r) + v0∇rγC

(α)
γσ yσ

+Dασ∇2yσ −DR (1− δα1) yα (r) (45)

where yα → {c,P,Q} are the hydrodynamic fields, K
(α)
βγ ∼ 1

rm , with m ≥ 2, are nonlocal

kernels that capture the effects of hydrodynamic interactions, and C(α)
γσ and Dασ are param-

eters that govern convective couplings from self propulsion and diffusive effect due to noise,

respectively. The hydrodynamic equation are nonlinear and nonlocal, due the power-law

dependence of the hydrodynamic interactions on the swimmers separation. It is precisely

these nonlocal terms that give rise to the peculiar nature of fluctuations in a suspension of

active particles.

In detail, the hydrodynamic equations are

∂tc (r, t) + v0∇ · (cP (r, t)) = −∇r ·
[(

α1

ζ
KF1 (r, t)− β1

ζ
KF2 (r, t)

)
c (r, t)

]

+
1

3

(
D‖ + 2D⊥

)
∇2

rc (r, t) + (D‖ −D⊥)∂i∂jcQij (r, t) (46)

∂tcPi (r, t) + v0∂j (cQij) +
v0

3
∂ic = −∇r ·

[(
α1

ζ
KF1 (r, t)− β1

ζ
KF2 (r, t)

)
cPi (r, t)

]

+
2

5
(D‖ −D⊥)∂i (∇ · cP) +

1

5

(
D‖ + 4D⊥

)
∇2cPi −DRcPi

− α2

5ζ`2

[
4Kτ1

ij (r, t)−Kτ1
ji (r, t)− δijK

τ1
ss (r, t)

]
cPj (r, t)

+
β3

ζ`2
Kτ2

j (r, t) c
(
Qij (r, t) +

2

3
δij

)
(47)

∂tcQij+
2v0

5
[∂icPj]

ST = −∇r ·
[(

α1

ζ
KF1 (r, t)− β1

ζ
KF2 (r, t)

)
cQij (r, t)

]

+
2

15

(
D‖ −D⊥

) (
∂i∂j − 1

3
δij∇2

)
c +

2

7

(
D‖ −D⊥

)
∂k

[
∂icQjk + ∂jcQik − 2

3
δij∂lcQkl

]

+
1

7

(
D‖ + 6D⊥

)
∇2cQij − 4DRcQij − 2α2

5ζ`2

[
Kτ1

ij (r, t)
]ST

c− β3

ζ`2
(Kτ2 · cP)ST

ij (48)

where [Yij]
ST denotes the symmetric traceless contraction of the tensor Yij, i.e., [Yij]

ST =

(1/2)(Yij + Yji) − (1/3)δijYkk. Finally, we have neglected O(Q2) terms in the contribu-

tion form the nematic part of the torque to the equation for the alignment tensor. These

terms have a very complicated angular dependence; at long wavelength they give convective

nonlinearities quadratic in Q and linear in gradients in the hydrodynamic equations.
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In the main body of the paper we focus on the linearized form of the hydrodynamic

equations, obtained by expanding the hydrodynamic fields yα about their homogeneous

values y0
α, with δyα = yα− y0

α. Introducing a Fourier representation δỹα (k) =
∫
r eik·rδyα (r),

the nonlocal terms take the form
[
K̃βγ (−k) δỹβ (k)

]
y0

γ. Since we are interested in the long

wavelength behavior, we expand the kernels as K̃ ∼ K(0) + ikK(1) + ... and retain terms

up to quadratic order in k. This procedure, when carried out in each of the homogeneous

states, yields the linearized hydrodynamic equations discussed in the paper. Finally, one

can radily verify that for the long ranged part of the force and torque, the kernels KF1 and

Kτ1 go as k0 in the wavevector and hence are solely responsible for the scale free instabilities

identified in the main text of the paper.

The hydrodynamic equations linearized about the isotropic state are

∂tδc̃ = α1c0δQ̃‖‖ + ikv0c0δP̃‖ − k2Dδc̃ (49)

∂tδP̃‖ = −DRδP‖ + ik
v0

3c0

δc̃− k2DpδP̃‖ (50)

and

∂tδQ‖‖ = −4DRδQ‖‖ − k2Dsp
δc̃

c0

(51)

∂tδQ‖⊥ = −4DRδQ‖⊥ + α2Q‖⊥ (52)

where

α1 =
4π

3

α1c0

ζ
=

3π

2
f (aL + aS) `

c0

ζ
(53)

D =
D‖ + 2D⊥

3
(54)

Dp =
2

5
(D‖ −D⊥) +

D‖ + 4D⊥
5

(55)

Dsp =
4

45

(
D‖ −D⊥

)
(56)

α2 =
4πc0

15

2α1

5ζ
=

9πc0

75ζ
f (aS + aL) ` (57)

The hydrodynamic equations linearized about the an orientationally ordered state are

∂tδñ− iv0ck‖δñ = −α2

2

([
15

k2
‖

k2
− 12

k‖
k

+ 1

]
δc̃ + 2

[
15

k2
‖

k2
+ 1

] (
k̂⊥ · δñ

))
k̂⊥ +

α2

4

k2
‖

k2
δñ

−Dnck⊥k‖δc̃− (Ds −Db)k⊥ · δñ−Dbk
2δñ (58)

where

Dnc = Ds −Db =
2

5
(D‖ −D⊥) (59)
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and

Db =
D‖ + 4D⊥

5
(60)

The stability analysis of these equations is reported in the main text of the paper.

S3. RELATIONSHIP TO PHENOMENOLOGICAL HYDRODYNAMICS

In this section, we show that the hydrodynamic equations obtained here have the same

formal structure as those proposed in the literature on a pure phenomenological basis. For

simplicity, we restrict ourselves to the equations for the density and polarization fields,

although it is straightforward to carry out the derivation for the general case.

Phenomenological hydrodynamic equations for active suspensions are generically written

in the form

∂tc +∇ · (cu− βcP) = D1∇2c (61)

∂tP + u · ∇P = −ωijPj + λpuijPj + +
K1 −K3

ζ
∇i (∇ ·P) +

K3

ζ
∇2Pi (62)

and

η∇2ui −∇ip− α∂j
PiPj

c
+ β′∂j∂iPj + β′′∂2Pi (63)

with ∇ · u = 0, ωij = 1
2
(∂iuj − ∂jui) and uij = 1

2
(∂iuj + ∂jui). All the coefficients in the

equations are phenomenological constants.

The Stokes Eq. (63) can be formally solved (with the condition ∇·u = 0). In the absence

of external forces in an infinite system, the solution is given by

ui(r, t) =
∫

dr′Oij ( r− r′)

[
−α∂′k

Pj (r′, t) Pk (r′, t)
c(r′, t)

+ β′∂′k∂
′
jPk (r′, t) + β′′∂′2Pj (r′, t)

]

(64)

where Oij (r) = 1
8πηr

(δij + r̂ir̂j) is the Oseen tensor and ∂′ denotes gradients with respect

to r′ . We then eliminate the flow velocity from the hydrodynamic equations by inserting

Eq. (64) in Eqs. (61) and (62). This yields a set of nonlocal hydrodynamic equations that

have precisely the structure of those obtained here by eliminating fluid flow from the outset

in term of pairwise hydrodynamic interactions. It is then easy to verify that the linearized

form of the equation is identical to that given in the main body of the paper for each
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homogeneous state.
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