
SI METHODS

Graph representation of the structural relationships between proteins

Figure SI 1 illustrates how we represent structural relationships between proteins in a

graph at two TM-score cutoff values d=0.4 and d=0.60. Figures SI 1A and SI 1D show the

corresponding TM-score matrices for a set of 5 protein structures identified as target and

template respectively, at these two TM-score cutoffs. Figure SI 1B and SI 1E show the

corresponding graphs derived from the TM-score matrices, with the set of proteins belonging

to the LSCC located inside the blue curve. Finally, Figures SI 1C and SI 1F show the

matrices representing the neighboring order k between each pair of template-target proteins.

Algorithm for the calculation of kth neighbors in protein structure space

Template protein j is defined to be a structural first neighbor of target protein i at a

TM-score cutoff d if the TM-score(j→i) ≥ d. We define a nonsymmetric matrix whose matrix

elements t1(i,j)=1 if j is a structural neighbor of i; otherwise, t1(i,j)=0. For such protein pairs,

we consider structure j to be a first neighbor, i.e. k=1, of protein structure i. If there are N

structures in the PDB library, then the total number of k=1 neighbors of protein structure i is

given by 

n1 i( )= t1 i, j( )
i=1

N

∑ (2a)

For computational efficiency, we want the list of all n i,k −1( ) neighbors of i, the mth

member of which is jj. This can be compactly represented by

nll m,i( ) = jj   for m=1,…,
 
n1 i( ). (2b)



If target and template structures i and j and j and l are first neighbors (i.e. t1(i,j)=1 and

t1(j,l)=1), but i and l are not (t1(i,l)=0), then i and l are second neighbors. That is, t2(i,l)=1. If

structures i and l are not second neighbors, then t2(i,l)=0.

More generally, we construct the neighbor matrix,

neib(i, j, ′k ) = ′k (3a)

that is to say, structures, i and j are ′k th structural neighbors. The value of ′k  is determined

by the minimum k such that t ′ k −1 i, j( )= 0 while t ′ k i, j( )= 1. Otherwise,

neib(i, j,k ′k ) = 0 (3b)

for all k ′k < ′k  and all k ′k > ′k .

We are now in a position to construct the recursive relationships to ascertain the

subset of structures that are no more than kth neighbors.

Consider for the ith structure, for all m =1,2, .. nk i( ) neighbors, the jjth structure that is

a kth neighbor

 jj = nlk m,i( ) (4a)

Consider now the neighbors of structure jj, the ′m th of which is

ll = nl ′ k ′ m , jj( ) (4b)

for all ′m neighbors =1, 2,.. n j, ′k( ). Then, structure i and ll are ′′k structural neighbors,

provided that all tk(i,ll) =0 for k< ′′k  where

′′k = neib(i, jj,k) + neib( jj,ll, ′k ) (5a)

and we set

neib(i,ll, ′′k ) = ′′k . (5b)

and



t ′ ′ k (i, ll) = 1 (5c)

where of course for all i and ll, we chose the minimum ′ ′ k  obtained from eq. 5b for all

intermediate structures jj.

From t ′ ′ k (i, ll) , we can calculate the ′′k neighbor list for structure i as follows

n ′ ′ k i( )= t ′ ′ k i, j( )
i=1

N

∑ (5d)

The mth structure that is the ′′k th neighbor of structure i immediately follows from eq. 5d, by

just counting the number of structures for which t(i,ll, ′′k ) is non zero.

In practice, the recursion relationships embodied in eq. 2-5, identify all 2s-1 neighbors

for s=1, 2, 3, etc. The first round calculates all k=1 neighbors. Then, in the second round,

s=2, we identify all structures that are at most second neighbors, viz. k=2. Let i,j and j,l be

first neighbors and i,l are second neighbors, schematically depicted as l→j→i. In the third

round of the iteration, s=3, we will identify at most the following sets of structure neighbors,

q→p→l→j→i; thus, structure q is the fourth neighbor to i and second neighbor to l. We will

also identify structures p→l→j→i, where q is the third neighbor to i and first neighbor to l.

In the next round (s=4), we select all structures between 5th and 8th neighbors. The

reason for this is as follows: Consider a set of protein structures v,q and where v→u→t→r→

q→p→l→j→i, since structure v is a fourth neighbor to structure q and thus an eighth

neighbor to structure i. In a similar fashion, structures u,t and r are seventh, sixth and fifth

neighbors to structure i. Thus, this is a rapid way of identifying all k=2s-1 neighbors in

structure space after s iterations.

The average fraction of proteins, fk, with no more than kth neighbors is readily

obtained from eq. 5d as follows



fk =
tk i, j( )

j =1

N

∑
i=1

N

∑
′ k −1

k

∑
N 2 (6)

In practice, we explore all s iterations until the results from iteration s and iteration s-

1 are the same. This defines the maximum average fraction of structures that are related, i.e.

the converged value, fmax . We further wish to identify the set of all strongly connected

clusters all of whose members satisfy

ts(i, j) = ts( j,i) (7)

That is, both the target and template structure pairs i and j are structural neighbors. We

identify LSCC, the largest strongly connected component, which is the largest strongly

connected cluster of a directed graph, all of whose members satisfy eq. 7.

FINDSITE based approach to establish functional relationships between proteins

For each protein, binding sites were detected using FINDSITE (1), an

evolution/structure-based approach for ligand-binding site prediction and functional

annotation that has been demonstrated to provide accurate functional annotations by

detecting common binding sites in evolutionarily related proteins. We employ a set of closely

related template structures to assign highly confident binding pockets to the dataset proteins.

First, for each protein, ligand-bound structures with the sequence identity >35% were

selected from the PDB (Oct-08). Then, FINDSITE was used to transfer template-bounds

ligands into a target protein upon the global target-template structure alignments generated

by TM-align. Binding pockets were identified by the spatial clustering of ligands using a

cutoff distance of 8 Å and ranked by the number of ligands. Here, we consider the top five

binding sites. In addition to the criterion of localization of the binding sites in the protein



structure, we impose the second criterion that a pair of proteins must be predicted to have a

similar set of binding properties to a library of small molecule ligands.

The second criterion demands that there be a certain chemical similarity between

molecules that bind to individual pockets. The Tanimoto coefficient (2) calculated for

molecular bit strings, using SMILES or SMARTS (3), is one of the most commonly used

measures in chemoinformatics to quantify the similarity between small molecules. Since

binding sites detected by FINDSITE are typically associated with ligands extracted from

similar sites in evolutionarily related proteins, we exploit this information to develop a more

sensitive metric that is very much in the spirit of sequence profile-profile similarity measures

(1). Previously, we found that the set of ligands provided by FINDSITE quite well describes

the chemical aspects of binding and can be used to construct molecular fingerprint profiles

for use in simple ligand-based virtual screening against a diverse compound library. As a

result, the top fraction of the ranked library is significantly enriched with known binders (1).

Here, we use this to construct a chemical similarity metric with respect to ligand-binding

sites, referred to as a chemical correlation. The collection of ligands identified for each

binding site is used to rank the KEGG compound library (Oct-07) that comprises 12,158

diverse molecules (4). Subsequently, the Pearson’s correlation coefficient (CC) is calculated

using the library ranks obtained for two binding pockets. A high CC (>0.5) indicates that the

pockets not only exhibit specific binding affinity toward similar ligands, but also do not bind

similar ligands. A significant structure alignment and common localization of the binding

pockets in conjunction with a high chemical correlation establishes a functional relationship

between a pair of proteins.



Random directed graph generation

Given a colored reference digraph, our goal is to generate random directed graphs that

preserve the total number of nodes and edges, and also the color and the local connectivity

properties of every node. The first order local connectivity of a node i is completely defined

by three numbers: 1) Nin, the number of nodes j adjacent to i that can reach i but cannot be

reached from i, 2) Nout, the number of nodes j adjacent to i that can be reached from i but

cannot reach i, and 3) Nin-out, the number of nodes j adjacent to i that can both reach i and be

reached from it. We separately consider three types of relationships between two adjacent

nodes i and j (i←j, i→j, and i↔j) to account for the correlation we observed between Nin +

Nin-out (indegree) and Nout+ Nin-out (outdegree). To generate a random graph from the

reference digraph, first, we randomly select four nodes (i1, j1, i2 and j2). Then, we evaluate the

following conditions: 1) color preservation, i.e., color (i1) = color (i2), and color (j1) = color

(j2), 2) existence of the same type of adjacency relationship between each pair i, j, whether

i←j, i→j, or i↔j, and 3) absence of adjacency between i1 and j2, and between i2 and j1. If the

three conditions are fulfilled, we remove the edge/s from i1 to j1 and from i2 to j2 and draw

the same type of edge/s from i1 to j2 and from i2 to j1. We repeat the steps of random

selection of four nodes and swapping of edges until convergence of the average number of

first neighbors per node that are identical to those in the original digraph. For the analyzed

digraphs, the convergence occurs after approximately n2 iterations, where n is the number of

nodes in the digraph. The properties of the resulting graph are then analyzed, and the

procedure is repeated for a total of 2000 times from which the relevant statistics of the

properties of the random digraphs are calculated. Since each swapping step maintains Nin,



Nout and Nin-out of each involved node, the nodes in the original and the randomized digraphs

will have identical and equally correlated out-degree and in-degree distributions.

TASSER Force Field

Most of the energy potential terms in TASSER have been previously described (5-7).

Here, we summarize the energy terms that are used in the folding simulations of polyvaline:

• Generic backbone hydrogen bonding: Two Cα−atoms, Cαi and Cαj interact when

the backbone fragments Cαi-1-Cαi-Cαi+1 and Cαj-1-Cαj-Cαj+1 adopt geometries

observed in protein structures, under the condition that a hydrogen bond forms

residues i  and j.

• A bias in the hydrogen bonding to select for geometries of the Cαi-1-Cαi-Cαi+1 and

Cαj-1-Cαj-Cαj+1 fragments compatible with the pre-assigned secondary structure

state of Cαi and Cαj.

• For sheet and coil residues, short-range backbone correlations enhance the

propensity of the backbone to adopt the pre-assigned secondary structures.

• A centrosymmetric potential that promotes a compact globular protein conformation.

• Orientation-dependent, generic attractions between side-chains: we assign a binding

energy for the two Val side-chains depending on their mutual orientation and

distance between their side chain centers of mass.

• Impenetrable hard-core radii for each Cα and side-chain center of mass.

Interestingly, we found that the original TASSER hydrogen bond scheme while

capable of covering most of the PDB did not generate a library of structures that are highly

connected. This effect was mainly operative for β-sheet containing proteins, which generated



non physical geometries and thereby dramatically increased the size of the conformation

space so that it was not so well connected. Examination of the original hydrogen bond

scheme revealed that it was far too permissive and allowed for quite twisted, non planar  β

strands to interact. Thus, to generate the library of compact homopolypeptide structures, we

introduce a cooperative hydrogen bond term, EHBCoop, into the TASSER force field to

promote hydrogen bond networks. We note that this hydrogen bond cooperative term

especially encourages the hydrogen bond networks among β secondary structures. Only main

chain hydrogen bonding is considered.

In hydrogen bond interactions, one residue can make one hydrogen bond with the

other residue by playing either donor or acceptor roles or it can make two hydrogen bonds by

playing both donor and acceptor roles. Then,

EHBCoop = − [Θ(i)  +
i

∑  δ(i)]
(8)

Θ(i) =
1, if  HB( j,i,k) =1
0, otherwise,

⎧ 
⎨ 
⎩ 

 (9)

where HB(j,i,k) is 1 if the j-th and i-th residues make a hydrogen bond by donor i and

acceptor j residues and the i-th and k-th residues make a hydrogen bond by an acceptor i- and

donor k-th residues.  Moreover,

δ(i) =
1, if  Θ(i) =1 and  Θ(i +1) =1
0, otherwise 

⎧ 
⎨ 
⎩ (10)

The ab initio version of TASSER is employed to sample the conformational space of

a given polyvaline sequence (8). SPICKER (9) is used to cluster the resulting set of structures

with up to the top eight most populated clusters selected for subsequent analysis.



SI RESULTS

PDB300 set results

The full PDB300 set contains 5906 compact proteins between 40 and 300 residues for

which all-against-all structural alignments were done. (The full list, the PDB300holo list, and

for each target protein, the set of proteins with associated TM-scores ≥ 0.40 are found at

http://cssb2.biology.gatech.edu/skolnick/files/FoldSpaceContinuity/). Here, proteins up to

300 residues are included in the analysis. Figure SI 2A shows the fraction of proteins that are

no more than k=1,2,4,16 and 32nd neighbors, given that first neighbors have a TM-score ≥d.

The red line shows the asymptotic result for fmax for the PDB200holo set (the subset of the full

PDB300 set where only proteins whose lengths range from 40 to 200 residues for which

functional assignments are available; see Methods). Similarly, Figure SI 2B shows, at

d=0.40, the relative size of the LSCC as a function of the kth neighbor cutoff for the PDB300

set (black thick line) and the PDB200holo set (red line). The thin line shows random digraph

results given the same first order local connectivity for each node as in the PDB300 set.

Figure SI 2C shows the length distribution of the relative abundance of proteins excluded

from the LSCC at d=0.40. Again, the same trends are seen as in the PDB200holo and

PDB200x sets.

These results clearly show that protein structure space is almost completely

connected, with a dataset size dependence typical of a cooperative transition (10, 11). Thus,

the results reported in the main text for proteins below 200 residues are in fact more general.

We note that in the main text we have restricted our analysis to these smaller proteins in

order to be able to compare results more directly with the polyvaline homopolypeptide

library.



Length of the shortest path for different secondary structure classes

Figure SI 3 shows the distributions of the shortest path length k (neighboring order)

for proteins pairs from the PDB200x set that belong to the specified secondary classes. For

example, the plot labeled α-α corresponds to all possible pairs of α protein templates linked

to α protein targets, while the plot labeled α-β corresponds to all possible pairs of α protein

templates linked to β protein targets and β protein templates linked to α protein targets. The

median value of the shortest path length for protein pairs of different secondary structure

class is k=3, which is identical to that corresponding to α-α or αβ-αβ protein pairs, and only

one unit larger than that for β-β protein pairs.

Sequence alignments corresponding to the proteins structurally aligned in Figure 1

Alignment between 1gnyA (153 residues) and 1ekrA (143 residues)

1gnyA GNVVIEVDMANGWRGNASGSTSHSGITYSADGVTFAALGDGVGAVFDI--
1ekrA ------------------------------------------------GE

1gnyA --ARPT-----TLEDAVIAMVVNVS--AE-FK---AS---EAN--LQ--I
1ekrA AHMVDVSAKAETVREARAEAFVTMRSETLAMIIDGRHHKGDVFATARIAG

1gnyA F--AQ-LKE-----DWSKG-EWDCLAGSSELTA-DTDLTLTCTIDEDDDK
1ekrA IQAAKRTWDLIPLCHPLMLSKVEVNL---QAEPEHNRVRIETLCRL--TG

1gnyA FNQTAR-DVQ--V--GIQ--AKG-TPAG--T--ITIKSVTI-TLAQEA--
1ekrA -KTG--VEMEALTAASVAALTI-YDMCKAVQKDMVIGPVRLLAKSSGDFK

Alignment between 1ekrA (143 residues) and 101m (154 residues)

1ekrA GEAHMVDVSAKAETVREARAEAFV-------T-MRSETLAMIIDGRHHKG
101m  ------------------------MVLSEGEWQLVLHVWAKVEADV---A

1ekrA DVFATARIAGIQ-AAKRTWDLIPLCHPLMLSKVE----------------
101m  GHGQDILIRLFKSHPET------------LEKFDRVKHLKTEAEMKASED

1ekrA ---V---NL--QA--EPEHNRV----RI--ET--LCRLTGKTG-VEMEAL
101m  LKKHGVTVLTALGAILKKKG--HHEAELKPLAQSHATK-----HK--IPI

1ekrA TAASVAALTIYDMCK---A-VQK-D-M--VI---GP-VR--L-LAKSSGD
101m  KYLEFISEAIIHVLHSRHPGNFGADAQGAMNKALELFRKDIAAKYKELGY

1ekrA FK-
101m  Q-G
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