
Text S1: Di and T under the null hypothesis

Here, we show analytically how deviations from the assumptions underlying Equations 1, 2

result in a null distribution which is not a standard normal.

Let us assume an underlying population P with MAFs pi from which samples F (of size

nF ) and G (of size nG) are drawn i.i.d. Consider now an additional sample Y . The null

hypothesis is that Y was drawn from P , independent of F and G; the alternative of interest

is that Y is drawn from G (or, symmetrically, F ). Under these idealized circumstances, we

observe that:

fi ∼ Bin(2nF , pi)/2nF , (S1-1)

gi ∼ Bin(2nG, pi)/2nG , (S1-2)

yi ∼ Bin(2, pi)/2 , (S1-3)

where the factors of two are a consequence of each sample possessing two independent

alleles per locus. In [1], it is proposed that T (the Z-score of Di across all SNPs) follows a

standard normal distribution (Equations 1,2). This proposition rests upon two assumptions:

namely, that the mean 〈Di〉 across all SNPs under the null hypothesis is zero, i.e., µ0 = 0

in Equation 2; and that the SNPs i are completely independent such that we can write the

variance of the mean as the mean variance, ie, Var(〈Di〉) = Var(Di)/s in the denominator

of Equation 2. Below, we consider sources of deviation from T ∼ N(0, 1) under the null

hypothesis.

Deviations from µ0 = 0

In the large-sample limit, under the null hypothesis,

lim
nF→∞

fi = pi ; lim
nG→∞

gi = pi , (S1-4)

and hence

lim
nF ,nG→∞

Di = lim
nF ,nG→∞

(
|yi − fi| − |yi − gi|

)
= 0 . (S1-5)

Intuition might further suggest that since fi and gi are both drawn from binomial distribu-

tions which are symmetric about pi, any sampling deviations resulting from finite nF , nG

will fall symmetrically, and hence µ0 = 0. As we will show below, however, this conclusion

is sensitive to two assumptions:

1. that F , G and Y are drawn from the same underlying population;
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2. that the sample sizes nF and nG are not only large, but comparable.

Because the number of SNPs s is quite large, slight deviations away from µ0 = 0 have

the power to shift the location of the null distribution of T considerably, rendering T

incomparable to a standard normal unless the true µ0 is known. Consider that the difference

in T with and without the µ0 = 0 assumption is

T − Tµ0=0 =
µ0√

Var(Di)/s
(S1-6)

and that because Di ranges on (−1, 1), max(Var(Di)) = 2. This means that

min(T − Tµ0=0) =
√

s√
2
µ0 (S1-7)

which can be quite large for even small values of µ0 since the number of SNPs s is on the

order of 105. It is thus essential that µ0 be known or controllable.

Dependence of µ0 on the assumption that F , G, and Y are samples of the same

underlying population.

Let us write the difference between MAFs fi and gi at locus i as τi,

fi = gi + τi . (S1-8)

We can then write

Di = |yi − gi − τi| − |yi − gi| , (S1-9)

and thus

µ0 = 〈|yi − gi − τi| − |yi − gi|〉 , (S1-10)

where µ0 is 〈Di〉 under the null hypothesis.

We next make a simplifying assumption: since pi are the minor allele frequencies and

thus 0 ≤ pi ≤ 0.5, and since fi and gi are estimates of pi, with few exceptions we will have

0 ≤ fi ≤ 0.5 and 0 ≤ gi ≤ 0.5 (eliminating this assumption does not significantly alter the

results). Under this assumption we can write

|yi − gi − τi| − |yi − gi| =


τi for yi = 0;

−τi for yi = 0.5;

−τi for yi = 1.

(S1-11)

and hence Equation S1-10 may be written

µ0 =
∑

i

[
τi · P(yi = 0|pi)− τi · P(yi = 0.5|pi)− τi · P(yi = 1|pi)

]
P(pi) P(τi) , (S1-12)
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where P(·) denotes probability and where we have exploited the fact that because F , G are

independent samples of P , τi is independent of pi, i.e., P(τi|pi) = P(τi). Observing that

P(yi = 0|pi) = (1− pi)2 ;

P(yi = 0.5|pi) = 2pi(1− pi) ;

P(yi = 1|pi) = p2
i ,

(S1-13)

Equation S1-12 becomes

µ0 =
∑

i

(
1− 4pi + 2p2

i

)
τi P(pi) P(τi) (S1-14)

= 〈(1− 4pi + 2p2
i ) τi〉 , (S1-15)

which is readily verified by simulation.

Equation S1-15 implies that when τi deviates from zero, either due to systematic differ-

ences in F and G (i.e., violation of the assumption that both are drawn on the same popula-

tion P ) or due to sampling variation, the location of the null distribution of the test statistic

given by Equation 2 will be shifted by an amount equal to 〈(1− 4pi + 2p2
i )τi〉 ·

√
s/Var(Di)

relative to that under the assumption that µ0 = 0. It is important to note that the shift

is a weighted average of τi; ie, it depends not only on the differences in MAFs τi but also

on pi, and hence it is not sufficient that 〈τi〉 = 0, since small τi will be amplified when pi is

small and reduced when pi is large. As a result, predicting the deviation away from µ0 = 0

to properly calibrate T requires knowing not only τi = fi − gi, but pi as well.

In practice, τi is easily calculated. On the other hand, knowing pi requires making

assumptions about the population from which Y is drawn. In the case where Y is, in fact,

drawn on the same population as F and G (and their sample sizes are known), fi and gi

may be used to estimate pi. However, when Y is from a different underlying population

than are F and G, the pi are difficult to obtain from the given data and the shift in T

resulting from Equation S1-15 is not readily calculated.

As a demonstration of this correction, consider the results obtained under the µ0 = 0

assumption given in Table 2. If, instead, we recompute T using µ0 as given by Equation S1-

15 and assuming that pi = (nF · fi + nG · gi)/(nF + nG), the classification results become

481,382 SNPs 50,000 SNPs

α = 0.05 α = 10−6 α = 0.05 α = 10−6

Sensitivity 99.90% 99.23% 97.36% 31.09%

Specificity, 200 CGEMS 40.0% 87.0% 78.0% 99.5%

Specificity, 90 HapMap CEPH 14.4% 55.5% 54.4% 100.0%

Specificity, 90 HapMap YRI 0.0% 0.0% 7.7% 100.0%
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Dependence of µ0 on sample sizes nF and nG.

The effect of deviations from the second assumption above is intuitively obvious: if

nG > nF , G will better approximate the underlying population P and so will be closer on

average to a future sample Y . The dependence is derived explicitly as follows:

Consider 〈Di〉 (cf. Equation 1) under the null hypothesis assumptions that Y , F , and

G are all drawn i.i.d. from the same underlying population P with MAFs pi. Writing the

probability distribution of pi as P(pi), 〈Di〉 is given by

〈Di〉 =〈|yi − fi| − |yi − gi|〉 = 〈|yi − fi|〉 − 〈|yi − gi|〉 (S1-16)

=
∫∫∫ ∞

−∞
|yi − fi| P(yi|pi) P(fi|pi) P(pi) dyi dfi dpi−

−
∫∫∫ ∞

−∞
|yi − gi| P(yi|pi) P(gi|pi) P(pi) dyi dgi dpi ,

(S1-17)

where we exploit the fact that Y , F and G are independent of each other but depend on

the underlying population MAFs.

The dependence of the first (second) term in Equation S1-17 on nF (nG) is derived as

follows. First, we note that since each yi is two Bernoulli trials (two alleles) with probability

pi, we have the following values of |yi − fi| with probability P(yi|pi) for each allowable value

of yi:

|yi − fi| · P(yi|pi) =


(
1− fi

)
·
(
p2

i

)
for yi = 1 ;(

|0.5− fi|
)
·
(
2pi(1− pi)

)
for yi = 0.5 ;(

fi

)
·
(
(1− pi)2

)
for yi = 0 .

(S1-18)

Moreover, since each fi follows a binomial distribution of size 2nF (two alleles per person),

we invoke the normal approximation to the binomial for values of nF > 10 with mean pi

and variance pi(1− pi)/(2nF ). Hence:

P(fi|pi) =

√
2nF

2πpi(1− pi)
exp

[
−2nF (fi − pi)2

2pi(1− pi)

]
(S1-19)

=
AF,i√

π
exp

[
−A2

F,i(fi − pi)2
]
, (S1-20)

where we introduce

AF,i =
√

nF /(pi(1− pi)) (S1-21)
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to simplify the notation. In consequence, the first term of Equation S1-17 can be written:∫∫ ∞
−∞

[
(1− fi)(p2

i ) + (|0.5− fi|)(2pi(1− pi)) + (fi)((1− pi)2)
]
·

·
AF,i√

π
exp

[
−A2

F,i(fi − pi)2
]
P(pi) dfi dpi (S1-22)

and the second term may be written analogously for G. The absolute value in Equation S1-

22 is dealt with by considering the fi ≥ 0.5 and fi ≤ 0.5 cases separately, i.e., treating

Equation S1-22 as the sum of integrals∫ ∞
−∞

[∫ ∞
0.5

(
(1− fi)(p2

i ) + (fi − 0.5)(2pi(1− pi)) + (fi)((1− pi)2)
)

P(fi|pi) dfi+

+
∫ 0.5

−∞

(
(1− fi)(p2

i ) + (0.5− fi)(2pi(1− pi)) + (fi)((1− pi)2)
)

P(fi|pi) dfi

]
P(pi) dpi

(S1-23)

Expanding the polynomials in Equation S1-23 and once more using Equation S1-21 to

simplify notation, we rewrite the above as∫ ∞
−∞

AF,i√
π

[∫ ∞
0.5

(
C1fi + C2

)
e−A2

F,i(fi−pi)
2

dfi+

+
∫ 0.5

−∞

(
C3fi + C4

)
e−A2

F,i(fi−pi)
2

dfi

]
P(pi) dpi (S1-24)

where C1, C2, C3, and C4 are functions of pi but independent of fi:

C1 = 1− 2p2
i , (S1-25)

C2 = 2p2
i − pi , (S1-26)

C3 = 1− 4pi + 2p2
i , (S1-27)

C4 = pi . (S1-28)

Performing the interior integration in Equation S1-24 yields

∫ ∞
−∞

AF,i√
π

[(
C1 − C3)

(
e−A2

F,i(0.5−pi)
2

2A2
F,i

)
+ (C3pi + C4)

( √
π

AF,i

)
+

+
(
(C1 − C3)pi + (C2 − C4)

)(√π erfc
(
AF,i(0.5− pi)

)
2AF,i

)]
P(pi) dpi . (S1-29)
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Expanding out the various Cs as well as AF,i, we now have for the first term of 〈Di〉

∫ ∞
−∞

(
pi(1− pi)

) [
2

√
pi(1− pi)

π nF
exp

(
−nF (0.5− pi)2

pi(1− pi)

)
+

+ 2(1− pi) + (2pi − 1)erfc

(√
nF (0.5− pi)2

pi(1− pi)

)]
P(pi) dpi , (S1-30)

which has an indirect dependence on nF . Performing the same integration for the second

term in Equation S1-17 yields analogous indirect nG dependence. As a result, when nF <

nG, the first term is greater than the second, yielding 〈Di〉 > 0; in the limit nF , nG → ∞,

this difference becomes smaller.

The dependence is illustrated by simulation in Figure S1-1A. Here, we assume a uniform

distribution of pi on (0, 0.5) and construct 105 pi’s for the underlying population P from

which we draw, independently, a sample G of size nG = 1000 and 200 samples Y from

which we estimate 〈Di〉 under the null hypothesis. Sample F is drawn i.i.d. from P with

sample sizes ranging from nF = 10 to nF = 1000, permitting us to plot 〈Di〉 as nF is varied.

The simulation results are shown as circles, overlayed with a plot of Equation S1-17 using

the result in Equation S1-30 and assuming the uniform distribution of pi. The values for

〈Di〉 obtained from the simulation closely matches those derived from Equation S1-30. In

Figure S1-1B, the corresponding values of T are presented.

Deviations from Var(〈Di〉) = Var(Di)/s

Invocation of the central limit theorem to compare T to a standard normal distribution

(as given in Equation 2) requires that the variance of the mean of Di be estimable by

the mean of the variance, ie, Var(〈Di〉) = Var(Di)/s. This, in turn, requires that the Di

are uncorrelated. However, if the various Di are correlated—most notably due to linkage

disequilibrium—this is no longer true. Specifically, the variance of the mean for s variables

Di with variance Var(Di) and average correlation ρ amongst the distinct Di is given by

Var(〈Di〉) =
(

1
s

+
s− 1

s
ρ

)
Var(Di) . (S1-31)

In the case where the average correlation amongst the Di’s is zero, Equation S1-31 yields

the result which is found in the denominator of Equation 2; on the other hand, ρ 6= 0

generates a
(
1 + (s − 1)ρ

)
multiplicative increase over the correlationless variance. The

large number of SNPs s results in little room for any correlation between them: consider

that Equation S1-31 dictates that for a modest number of SNPs s = 5 ·104 even a very slight
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average correlation between all pairs of SNPs ρ = 0.002 would result in a tenfold increase in

Var(T ); for 500K SNPs (s = 5 · 105), ρ = 0.0002 causes a a two order of magnitude increase

in Var(T ). However, it is impossible to ascertain ρ simply from yi, fi, and gi. Instead, this

issue may be addressed by choosing fewer SNPs and assuming that ρ is sufficiently small.
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Figure S1-1: Observed 〈Di〉 and T values for simulated data with varying sample sizes of

nF under the µ0 = 0 assumption. In A, open circles represent the average 〈Di〉 for each

simulation; the solid line is the theoretical 〈Di〉 based on numerical integration of Eq. S1-

30. In B, boxplots of the observed T s for each simulation are given assuming µ0 = 0;

box boundaries correspond to the 0.25 and 0.75 quantiles, and whiskers indicate the 0.05

and 0.95 quantiles (T values outside those limits are shown as square points). Horizontal

lines at T = 0 (green), T = 1.64 (corresponding to α = 0.05, in amber), and T = 4.75

(corresponding to α = 10−6, in red) are shown for reference; note that for nF < 600, at

least 25% of null samples yield significant T at the nominal α = 0.05.
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