Text S1: D; and T under the null hypothesis

Here, we show analytically how deviations from the assumptions underlying Equations 1, 2
result in a null distribution which is not a standard normal.

Let us assume an underlying population P with MAFs p; from which samples F (of size
nr) and G (of size ng) are drawn i.i.d. Consider now an additional sample Y. The null
hypothesis is that Y was drawn from P, independent of F' and G the alternative of interest
is that Y is drawn from G (or, symmetrically, F'). Under these idealized circumstances, we

observe that:

fi ~ Bin(2np,p;)/2nF, (S1-1)
9i ~ Bin(2ng,pi)/2nc, (S1-2)
yi ~ Bin(2,pi)/2, (51-3)

where the factors of two are a consequence of each sample possessing two independent
alleles per locus. In [1], it is proposed that T' (the Z-score of D; across all SNPs) follows a
standard normal distribution (Equations 1,2). This proposition rests upon two assumptions:
namely, that the mean (D;) across all SNPs under the null hypothesis is zero, i.e., ug = 0
in Equation 2; and that the SNPs ¢ are completely independent such that we can write the
variance of the mean as the mean variance, ie, Var((D;)) = Var(D;)/s in the denominator
of Equation 2. Below, we consider sources of deviation from 7" ~ N(0,1) under the null

hypothesis.

Deviations from py =0

In the large-sample limit, under the null hypothesis,

lim f;=p;; lim g¢; =p;, (S1-4)
ngp—00 ng—00
and hence
np,ng—00 np,ng—00

Intuition might further suggest that since f; and g; are both drawn from binomial distribu-
tions which are symmetric about p;, any sampling deviations resulting from finite np,ng
will fall symmetrically, and hence pg = 0. As we will show below, however, this conclusion

is sensitive to two assumptions:

1. that F', G and Y are drawn from the same underlying population;



2. that the sample sizes nr and ng are not only large, but comparable.

Because the number of SNPs s is quite large, slight deviations away from pg = 0 have
the power to shift the location of the null distribution of T considerably, rendering T
incomparable to a standard normal unless the true g is known. Consider that the difference
in T" with and without the py = 0 assumption is
Ho
T-T,-0= ———=— S1-6
ro=0 Var ( Dz) /8 ( )
and that because D; ranges on (—1, 1), max(Var(D;)) = 2. This means that
S
VS
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which can be quite large for even small values of ug since the number of SNPs s is on the

min(T — Tyy—0) = (S1-7)

order of 10°. It is thus essential that z be known or controllable.

Dependence of iy on the assumption that F', G, and Y are samples of the same
underlying population.

Let us write the difference between MAFs f; and g; at locus i as 7,

fi=gi+mi. (S1-8)
We can then write
Di=lyi —gi — 7l — lyi — gil , (S1-9)
and thus
o = (lyi — 9 — 7l — |yi — gil) , (S1-10)

where pg is (D;) under the null hypothesis.

We next make a simplifying assumption: since p; are the minor allele frequencies and
thus 0 < p; < 0.5, and since f; and g; are estimates of p;, with few exceptions we will have
0<fi<0.5and 0 < g; <0.5 (eliminating this assumption does not significantly alter the

results). Under this assumption we can write
7 fory; =0;
i — gi —7il = lyi —gil = =7 for y; = 0.5; (S1-11)
—7; for y; = 1.

and hence Equation S1-10 may be written

po=>_ [Ti P(yi = 0lps) — 7i - P(ys = 0.5[p;) — 73 - P(y; = 1\101')] P(pi) P(ri),  (S1-12)

i



where P(-) denotes probability and where we have exploited the fact that because F', G are
independent samples of P, 7; is independent of p;, i.e., P(7;|p;) = P(7;). Observing that

P(yi = Olpi) = (1 — pi)?;
P(y; = 0.5|p;) = 2pi(1 — pi) ; (51-13)
P(y; = 1|p;) = 7 ,
Equation S1-12 becomes
po =Y (1 —4pi +2p}) 7 P(p;) P(7:) (51-14)
i
= (1 —4p; +2p}) 72) , (S1-15)
which is readily verified by simulation.

Equation S1-15 implies that when 7; deviates from zero, either due to systematic differ-
ences in F' and G (i.e., violation of the assumption that both are drawn on the same popula-
tion P) or due to sampling variation, the location of the null distribution of the test statistic
given by Equation 2 will be shifted by an amount equal to (1 — 4p; + 2p?)7;) - \/s/Var(D;)
relative to that under the assumption that ug = 0. It is important to note that the shift
is a weighted average of 7;; ie, it depends not only on the differences in MAFs 7; but also
on p;, and hence it is not sufficient that (7;) = 0, since small 7; will be amplified when p; is
small and reduced when p; is large. As a result, predicting the deviation away from pg =0
to properly calibrate T' requires knowing not only 7, = f; — g;, but p; as well.

In practice, 7; is easily calculated. On the other hand, knowing p; requires making
assumptions about the population from which Y is drawn. In the case where Y is, in fact,
drawn on the same population as F' and G (and their sample sizes are known), f; and g;
may be used to estimate p;. However, when Y is from a different underlying population
than are F' and G, the p; are difficult to obtain from the given data and the shift in T
resulting from Equation S1-15 is not readily calculated.

As a demonstration of this correction, consider the results obtained under the pg = 0
assumption given in Table 2. If, instead, we recompute T" using pg as given by Equation S1-
15 and assuming that p; = (np - fi + ng - ¢;)/(nr + ng), the classification results become

481,382 SNPs 50,000 SNPs
a=005|a=10"°%|a=005|a=10"°

Sensitivity | 99.90% 99.23% | 97.36% 31.09%

Specificity, 200 CGEMS 40.0% 87.0% 78.0% 99.5%
Specificity, 90 HapMap CEPH 14.4% 55.5% 54.4% 100.0%
Specificity, 90 HapMap YRI 0.0% 0.0% 7. 7% 100.0%




Dependence of 1y on sample sizes nrp and ng.

The effect of deviations from the second assumption above is intuitively obvious: if
ng > np, G will better approximate the underlying population P and so will be closer on
average to a future sample Y. The dependence is derived explicitly as follows:

Consider (D;) (cf. Equation 1) under the null hypothesis assumptions that Y, F', and
G are all drawn i.i.d. from the same underlying population P with MAFs p;. Writing the
probability distribution of p; as P(p;), (D;) is given by

(Di) =(lyi = fil = lyi = gil) = (|yi = fil) = lvi — gil) (51-16)

/// — fil Plyilps) P(filps) P(ps) dy; df; dpi—

(S1-17)
/// — gil P(yilpi) P(gilpi) P(p:) dyi dgi dp;

where we exploit the fact that Y, F' and G are independent of each other but depend on
the underlying population MAFs.

The dependence of the first (second) term in Equation S1-17 on ng (ng) is derived as
follows. First, we note that since each y; is two Bernoulli trials (two alleles) with probability

pi, we have the following values of |y; — f;| with probability P(y;|p;) for each allowable value

of y;:
(1= 1i)-(7) for y; = 1;

lyi = fil - P(yilpi) = § (10.5 = fil )-(2pi(1 — ps))  for y; = 0.5; (S1-18)
(fi)-((1 = p)?) for 1, = 0.

Moreover, since each f; follows a binomial distribution of size 2ng (two alleles per person),
we invoke the normal approximation to the binomial for values of ngp > 10 with mean p;

and variance p;(1 — p;)/(2np). Hence:

oy 2np N _QTZF(fi—Pi)T )
PR = |5 e p[ Bl (51-19)
_ Ari exp [— A% (fi — pi)?] (S1-20)

NG

where we introduce

Fi = V/nr/(pi(1— p)) (S1-21)



to simplify the notation. In consequence, the first term of Equation S1-17 can be written:

JI - Ja= 8063+ Q05— st - p + @ -9

Ap,i
. \/F% exp [A%‘z(fl - pi)2:| P(p;) df; dp;  (S1-22)

and the second term may be written analogously for G. The absolute value in Equation S1-

22 is dealt with by considering the f; > 0.5 and f; < 0.5 cases separately, i.e., treating

Equation S1-22 as the sum of integrals

/OO [/000 <(1 — £i)(02) + (fi — 0.5)(2pi(1 — py)) + (fi) (1 — pi)2)> P(f;|p:) dfi+

—o0 .5

0.5
- (u—m@b+w5—m@mu—m»+mxa—mﬁ)mmMmﬂP@wm

— 00

(S1-23)

Expanding the polynomials in Equation S1-23 and once more using Equation S1-21 to

simplify notation, we rewrite the above as

© Ap; [ [ _ .
/ \/P;r [/ (Cufi+ Co)e millp ) gpis
—00 0.5

0.5
+/ (Cafi+ Ca)e 0Pl dp; | Pp) dp; - (S1-24)

—0o0

where C1, Cy, C3, and C4 are functions of p; but independent of f;:

Cr=1-2p7, (S1-25)
Co = 2p] — pi, (S1-26)
Cs =1—4p; +2p?, (S1-27)
Cy=pi. (S1-28)
Performing the interior integration in Equation S1-24 yields
*© Ap; e~ AFi(05-pi)° N3
e —C) | | + (C3pi + C
[F e 3)< oz, ) OO A )
merfc(Ap;(0.5 — p;
+((01 — C3)p; + (Ca — C4)> (f (251}(- ))>] P(p;) dp; . (S1-29)



Expanding out the various Cs as well as Ap;, we now have for the first term of (D;)

/_Oo(pl(l ") [2 e p( pi(1—p;) )+

np(0.5 —p;)?

+2(1—p;) + (2pi — 1)effc< pi(1 —p;)

>] P(pi) dpi, (S1-30)

which has an indirect dependence on ng. Performing the same integration for the second
term in Equation S1-17 yields analogous indirect ng dependence. As a result, when np <
ng, the first term is greater than the second, yielding (D;) > 0; in the limit np, ng — oo,
this difference becomes smaller.

The dependence is illustrated by simulation in Figure S1-1A. Here, we assume a uniform
distribution of p; on (0,0.5) and construct 10° p;’s for the underlying population P from
which we draw, independently, a sample G of size ng = 1000 and 200 samples Y from
which we estimate (D;) under the null hypothesis. Sample F' is drawn i.i.d. from P with
sample sizes ranging from ny = 10 to np = 1000, permitting us to plot (D;) as np is varied.
The simulation results are shown as circles, overlayed with a plot of Equation S1-17 using
the result in Equation S1-30 and assuming the uniform distribution of p;. The values for
(D;) obtained from the simulation closely matches those derived from Equation S1-30. In

Figure S1-1B, the corresponding values of T' are presented.

Deviations from Var((D;)) = Var(D;)/s

Invocation of the central limit theorem to compare T to a standard normal distribution
(as given in Equation 2) requires that the variance of the mean of D; be estimable by
the mean of the variance, ie, Var((D;)) = Var(D;)/s. This, in turn, requires that the D;
are uncorrelated. However, if the various D; are correlated—most notably due to linkage
disequilibrium—this is no longer true. Specifically, the variance of the mean for s variables

D; with variance Var(D;) and average correlation p amongst the distinct D; is given by

Var((Dy)) = (1 it

- p) Var(D;) . (S1-31)

In the case where the average correlation amongst the D;’s is zero, Equation S1-31 yields
the result which is found in the denominator of Equation 2; on the other hand, p # 0
generates a (1 + (s — 1),0) multiplicative increase over the correlationless variance. The
large number of SNPs s results in little room for any correlation between them: consider

that Equation S1-31 dictates that for a modest number of SNPs s = 5-10% even a very slight



average correlation between all pairs of SNPs p = 0.002 would result in a tenfold increase in
Var(T); for 500K SNPs (s = 5-10°), p = 0.0002 causes a a two order of magnitude increase
in Var(T'). However, it is impossible to ascertain p simply from y;, f;, and g;. Instead, this

issue may be addressed by choosing fewer SNPs and assuming that p is sufficiently small.



A <D;> for simulated null samples
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Figure S1-1: Observed (D;) and T values for simulated data with varying sample sizes of
np under the g = 0 assumption. In A, open circles represent the average (D;) for each
simulation; the solid line is the theoretical (D;) based on numerical integration of Eq. S1-
30. In B, boxplots of the observed Ts for each simulation are given assuming po = 0;
box boundaries correspond to the 0.25 and 0.75 quantiles, and whiskers indicate the 0.05
and 0.95 quantiles (7" values outside those lignits are shown as square points). Horizontal
lines at T' = 0 (green), T' = 1.64 (corresponding to o = 0.05, in amber), and T = 4.75
(corresponding to o = 1075, in red) are shown for reference; note that for np < 600, at

least 25% of null samples yield significant T" at the nominal o = 0.05.



