Web-based Supplementary Materials for GENE-TRAIT SIMILARITY REGRESSION FOR MULTIMARKER-BASED ASSOCIATION ANALYSIS by

Tzeng JY, Zhang D, Chang SM, Thomas DC, Davidian M

Web Appendix A. Derivation of the distribution of U_b

Equation (4) of the paper expresses the score statistic as $U_b = \frac{1}{2}$ $\frac{1}{2} (Y - \hat{\mu}^0)^T V^{-1} \Omega^{-1} S_0 \Omega^{-1} V^{-1} (Y - \hat{\mu}^0)$. To derive its distribution, we first apply Taylor expansion on $\hat{\mu}^0$ and get that under the null hypothesis,

$$
\widehat{\mu}^0 = \delta(X\widehat{\gamma}) \approx \mu^0 + DX(\widehat{\gamma} - \gamma),
$$

where $D = diag \{ \partial \delta (\eta_i) / \partial \eta_i \}$ and $\eta_i = X_i^T \gamma$. By the score function $U_\gamma = X^T D V^{-1} (Y - \mu^0)$ and that $E(\partial U_{\gamma}/\partial \gamma) = -X^T D V^{-1} D X$ under H_0 ,

$$
(\widehat{\gamma} - \gamma) \approx (X^T D V^{-1} D X)^{-1} X^T D V^{-1} (Y - \mu^0).
$$

Therefore

$$
Y - \hat{\mu}^0 \approx Y - \left\{ \mu^0 + DX (X^T DV^{-1}DX)^{-1} X^T DV^{-1} (Y - \mu^0) \right\}
$$

=
$$
\left\{ I - DX (X^T DV^{-1}DX)^{-1} X^T DV^{-1} \right\} (Y - \mu^0).
$$

Multiplying both sides by matrix V^{-1} , we have $V^{-1}(Y - \hat{\mu}) \approx Q(Y - \mu^0)$ with $Q = V^{-1} V^{-1}DX (X^T D V^{-1} DX)^{-1} X^T D V^{-1}$, the projection matrix under H_0 . Therefore,

$$
U_b \approx \frac{1}{2} (Y - \mu^0)^T Q \Omega^{-1} S_0 \Omega^{-1} Q (Y - \mu^0)
$$

=
$$
\frac{1}{2} \tilde{Y}^T C \tilde{Y},
$$

where $\tilde{Y} = V^{-\frac{1}{2}}(Y - \mu^0)$ and is the standardized Y under H_0 , i.e., its *i*th element is equal to $(Y_i - \mu_i^0)$ $\binom{0}{i}$ / $\sqrt{\mathrm{v}_i^0}$ $\frac{1}{2}$. Matrix $C = V^{\frac{1}{2}} Q \Omega^{-1} S_0 \Omega^{-1} Q V^{\frac{1}{2}} / 2$.

Let $\Lambda = diag(\lambda_i)$ with $\lambda_1 \geq \cdots \geq \lambda_n$ the ordered eigenvalues of matrix C, and let E be an $n \times n$ matrix consisting of vector e_i , the corresponding orthonormal eigenvectors of λ_i . We then have

$$
U_b \approx \widetilde{Y}^T C \widetilde{Y} = \widetilde{Y}^T E \Lambda E^T \widetilde{Y} = Z^T \Lambda Z,
$$

where $Z = diag\{Z_i\}$ with $Z_i \equiv e_i^T \tilde{Y}$. Provided that each e_i is not dominated by a few elements, Z_i will be approximately independently standard normal random variables. Therefore under H_0 , the distribution of U_b is approximately the same as that of $\sum_{i=1}^n \lambda_i \chi^2_{1,i}$, the weighted chi-squared distribution.

Web Appendix B. Variance of Y **in Section 3**

 $cov(Y_i, Y_j | X, H) = \mathbb{E}_{\beta} \{cov(Y_i, Y_j | \beta, X, H) | X, H\} + cov_{\beta} \{\mu_i(\beta), \mu_j(\beta) | X, H\}.$

The first is zero by conditional independence. Here we tentatively rewrite μ_i as $\mu_i (\beta)$ to denote that μ_i is a function of β . By the Taylor expansion of $\mu_i(\beta)$ around $E\beta = 0$,

$$
covβ(μi, μj | X, H) ≈ covβ {μi(0) + μ'i(0)T β, μj(0) + μ'i(0)T β | X, H}= μ'i(0)T var (β) μ'j(0)= {g'(μi0) g'(μj0)}-1 × τHiTRβHj,
$$

as μ_i' $\mathcal{U}'_i(\beta) = \partial \mu_i(\beta) / \partial \beta = \{g'(\mu_i)\}^{-1} H_i.$