## Supporting Information

# Phosphine-Promoted [3 + 3] Annulations of Aziridines With Allenoates: Facile Entry Into Highly Functionalized Tetrahydropyridines

### Hongchao Guo, Qihai Xu, and Ohyun Kwon

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

#### Contents

| General Information                                                                                 | S2            |
|-----------------------------------------------------------------------------------------------------|---------------|
| Preparation of the Allenoates 2 and 2D                                                              | S2            |
| Preparation of the Aziridines <b>1a–o</b> and (S)- <b>1a</b>                                        | S4            |
| Preparation of the Deuterium-Labeled Aziridine 1a-D                                                 | S4            |
| General Procedure for the [3 + 3] Allene/Aziridine Annulation                                       | <b>S</b> 6    |
| [3 + 3] Annulation of the Deuterium-Labeled Allenoate <b>2D</b>                                     | S14           |
| [3 + 3] Annulation of the Enantiomerically Pure Aziridine (S)-1a                                    | S15           |
| [3 + 3] (Crossover) Annulation of the Deuterium-Labeled Aziridine <b>1a-D</b>                       | S15           |
| $^{31}$ P NMR Spectrum Revealing Free PPh <sub>3</sub> in the [3 + 3] Annulation Mixture            | S17           |
| Hydrogen/Deuterium Exchange Experiments on the Tetrahydropyridine 3a                                | S19           |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of the Aziridine <b>1a-D</b>                         | S20           |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra of New Compounds <b>3a–3o</b>                        | S21           |
| <sup>1</sup> H NMR Spectra of the Partially Deuterium Labeled Compounds <b>3p</b> and <b>3q</b>     | S36           |
| HPLC Chromatograms of the Aziridines $1a$ and $(S)$ - $1a$ and the Tetrahydropy                     | ridines       |
| <b>3a</b> and (–)- <b>3a</b>                                                                        | S38           |
| <sup>1</sup> H NMR Spectra of <b>3a-D</b> and a 1:1 Mixture of the Tetrahydropyridines <b>3a</b> an | d <b>3a-D</b> |
|                                                                                                     | S42           |
| ESI Mass Spectra of <b>3a</b> , <b>3a-D</b> , and a Mixture of <b>3a</b> and <b>3a-D</b>            | S43           |
| ORTEP Representations of Compounds 3a and 3n                                                        | S46           |

#### **General Information**

All reactions were performed under argon atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Dichloromethane was freshly distilled from CaH<sub>2</sub>. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates (0.25 mm thickness, SiliCycle silica gel). Chromatograms were visualized through fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using SiliCycle Silica-P Flash silica gel (60 Å pore size, 40–63 µm). Infrared spectra were recorded using a Perkin–Elmer Spectrum One FT-IR spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> on Bruker Avance 500, ARX-500, or ARX-400 spectrometers, as indicated. Chemical shifts ( $\delta$  ppm) are provided relative to tetramethylsilane (TMS), with the resonance of the undeuterated solvent or TMS as the internal standard. <sup>1</sup>H NMR spectral data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet), coupling constant(s) (Hz), integration. <sup>13</sup>C NMR spectral data are reported in terms of chemical shift. Accurate mass determinations were obtained on a Spec Ultima 7T FTICR (ESI-MS) spectrometer using samples dissolved in MeOH. High-performance liquid chromatography (HPLC) was performed on a Shimadzu LC-20AB HPLC system equipped with a spectrophotometric detector (monitoring at 254 nm). X-ray crystallographic data were collected using a Bruker SMART CCD-based diffractometer equipped with a low-temperature apparatus operated at 100 K.

## Preparation of Diethyl 2-Vinylidenesuccinate (2) and the Deuterium-Labeled 2-Vinylidenesuccinate (2D)<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Lang, R. W.; Hansen, H. J. Org. Syn. 1984, 62, 202.



Ethyl 2-bromoacetate (18.04 g, 108 mmol) was added at room temperature to a stirred solution of (ethoxycarbonylmethylene)triphenylphosphorane (13.92 g, 40 mmol) in CHCl<sub>3</sub> (120 mL). The reaction mixture was stirred for 30 h under reflux and then concentrated to give the phosphonium bromide as a brown solid. After drying under high vacuum for 2 h, the crude solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (80 mL), triethylamine (12.2 mL, 88 mmol) was added dropwise over 5 min, and then the mixture was stirred for 1 h. Acetyl chloride (2.84 mL, 40 mmol) was added dropwise via a syringe pump over 1 h and the resulting mixture was stirred for 2 h at room temperature and then concentrated. The residue was diluted with ether (100 mL) and the solid was filtered off under reduced pressure through a pad of Celite, which was washed with ether  $(3 \times$ 20 mL). The combined ether solution was concentrated and the residue was purified by distillation to afford the product as a colorless oil (5.85 g, 74%). IR (neat)  $v_{max}$ 3066, 2984, 1971, 1942, 1739, 1712, 1368, 1264, 1263 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.22–1.30 (m, 6H), 3.24–3.26 (m, 2H), 4.13–4.25 (m, 4H), 5.20–5.22 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 14.18, 14.19, 34.8, 61.0, 61.4, 79.5, 94.6, 166.3, 170.5, 214.5; HRMS (EI) calculated for  $C_{10}H_{14}O_4$  [M]<sup>+</sup> 198.0892, found 198.0889. When deuterium-labeled acetyl chloride used, the corresponding was deuterium-labeled diethyl 2-vinylidenesuccinate was obtained as a colorless oil (5.67 g, 71%). IR (neat)  $v_{max}$  2983, 2938, 2907, 2214, 1937, 1732, 1713, 1465, 1447, 1393, 1369, 1275, 1182, 1109, 1032, 920, 860, 776, 686, 652, 570 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.19–1.29 (m, 6H), 3.21 (s, 2H), 4.08–4.25 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 14.1, 34.7, 60.9, 61.3, 94.8, 129.0, 166.2, 170.4, 214.6; MS (EI): 59, 69, 94, 107, 117, 122, 183, 186, 201 [M + H]<sup>+</sup>.

Preparation of the Aziridines 1a-o and (S)-1a. $^2$  1-(4-Nitrobenzenesulfonyl)aziridine, $^{2a}$ 2-methyl-1-(4-nitrobenzenesulfonyl)aziridine,2-aryl-1-(4-nitrobenzenesulfonyl)aziridines, $^{2c}$ and(S)-1-(4-nitrobenzenesulfonyl)-2-phenylaziridine<sup>2b</sup>were prepared according toprocedures described previously in the literature.

Preparation of the Deuterium-Labeled Aziridine 1a-D



A mixture of *p*-chloronitrobenzene- $d_4$  (2.052 g, 12.700 mmol), sulfur (0.297 g, 9.256 mmol, 0.729 equiv), Na<sub>2</sub>S·9H<sub>2</sub>O (2.196 g, 9.144 mmol, 0.720 equiv), and NaOH (0.508 g, 12.700 mmol, 1.0 equiv) in ethanol (50 mL) was heated under reflux for 2 h. The reaction was monitored (TLC) using the known non-labeled compound as the standard. The reaction was quenched with aqueous 10% HCl solution (20 mL) and diluted with ethyl acetate (150 mL). The organic layer was washed with aqueous 10% HCl solution, dried (anhydrous Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. The product *p*-nitrobenzenethiol- $d_4$  (yellow solid, 2.045 g) was used directly in the following step

<sup>&</sup>lt;sup>2</sup> (a) Skerlj, R. T.; Nan, S.; Zhou, Y.; Bridger, G. J. *Tetrahedron Lett.* **2002**, *43*, 7569. (b) Farràs, J.; Ginesta, X.; Sutton, P. W.; Taltavull, J.; Egeler, F; Romea, P.; Urpí, F.; Vilarrasa, J. *Tetrahedron* **2001**, *57*, 7665. (c) Ryan, D.; McMorn, P.; Bethell, D.; Hutchings, G. Org. Biomol. Chem. **2004**, *2*, 3566.

without purification. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 3.79 (br s, 2H).

A mixture of *p*-nitrobenzenethiol- $d_4$  (2.040 g, 12.700 mmol), acetic acid (20 mL, 349.25 mmol, 27.5 equiv), and 30% H<sub>2</sub>O<sub>2</sub> (10 mL, 97.79 mmol, 7.7 equiv) was heated under reflux for 2 h. The reaction was monitored (TLC) using the known non-labeled compound as the standard. The volatile materials were evaporated under reduced pressure and the residue was dried under high vacuum. The product *p*-nitrobenzenesulfonic acid- $d_4$  (yellowish solid, 2.703 g) was used directly in the following reaction.

A mixture of *p*-nitrobenzenesulfonic acid- $d_4$  (2.703 g, 12.70 mmol) and SOCl<sub>2</sub> (5 mL, 68.58 mmol, 5.4 equiv) was heated under reflux for 5 h. The reaction was monitored (TLC) using the known non-labeled compound as the standard. The excess SOCl<sub>2</sub> was evaporated under reduced pressure. The sticky oily residue was used directly in the following step.

Ammonium hydroxide (10 mL, 77.47 mmol, 6.1 equiv) was added slowly to a solution of *p*-nitrobenzenesulfonyl chloride- $d_4$  (crude product, 12.70 mmol) in THF (20 mL). The reaction was monitored (TLC) using the known non-labeled compound as the standard. After stirring for 0.5 h at rt, no sulfonyl chloride was detectable in the mixture. Saturated aqueous NaCl (50 mL) and ethyl acetate (200 mL) were added and then the separated organic layer was washed with saturated aqueous NaCl solution, dried (anhydrous Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. The solid was dissolved in ethyl acetate (100 mL) and then hexane (150 mL) was added slowly. The yellow solid was collected and dried to give 1.810 g (69.1%) of the deuterium-labeled sulfonamide, which was pure enough for further use. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>COCD<sub>3</sub>):  $\delta$  6.96 (br s, 2H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>COCD<sub>3</sub>) 124.5, 124.8, 125.1, 127.8, 128.1, 128.4, 150.2, 150.6; MS (ESI): *m/z* calcd for C<sub>6</sub>H<sub>3</sub>D<sub>4</sub>N<sub>2</sub>O<sub>4</sub>S [M + H]: 207.03, found: 207.0, C<sub>6</sub>H<sub>3</sub>D<sub>4</sub>N<sub>2</sub>NaO<sub>4</sub>S [M + Na]: 229.02, found: 229.2.

With the deuterium labeled sulfonamide and styrene- $d_5$  in hand, the labeled aziridine **1a-D** was furnished in 57.6% yield using a previously described procedure.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Chem. Commun. 2006, 3337.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  2.52 (d, J = 4.4 Hz, 1H), 3.13 (d, J = 7.2 Hz, 1H), 3.91 (dd, J = 7.2, 4.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) 36.6, 41.8, 123.8, 124.0, 124.3, 125.8, 126.1, 126.3, 128.0, 128.3, 128.5, 128.6, 128.8, 129.1, 134.0, 143.8, 150.6; MS (ESI): m/z calcd for C<sub>14</sub>H<sub>4</sub>D<sub>9</sub>N<sub>2</sub>O<sub>4</sub>S [M + Na]: 314.11, found: 314.1.

General Procedure for the [3 + 3] Allene/Aziridine Annulation. An oven-dried 50-mL flask was charged with triphenylphosphine (0.097 mmol), the *N*-4-nitrobenzenesulfonyl-protected aziridine (0.097 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at room temperature. After adding diethyl 2-vinylidenesuccinate (0.233 mmol) to this solution, the mixture was stirred at room temperature for 36 h and then another charge of diethyl 2-vinylidenesuccinate (0.233 mmol) was added and the resulting mixture stirred for an additional 36 h. The reaction mixture was concentrated and the residue purified through flash column chromatography (EtOAc/hexane, 1:3) to afford the tetrahydropyridine product.



#### trans-Diethyl

**2-(4-Nitrobenzyl)-5-phenyl-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate** (3a): 73%; yellow solid; IR (film)  $v_{max}$  3396, 2982, 2918, 2850, 1732, 1682, 1599, 1520, 1368, 1346, 1179, 1108, 1028, 858, 759, 736, 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.14–1.18 (m, 6H), 3.27–3.33 (m, 2H), 3.48–3.52 (m, 1H), 3.87 (d, *J* = 4.0 Hz, 1H), 4.00–4.13 (m, 4H), 4.20 (AB d, *J* = 16.0 Hz, 1H), 4.32 (AB d, *J* = 16.0 Hz, 1H), 4.44 (s, 1H), 7.18–7.20 (m, 2H), 7.20–7.31 (m, 3H), 7.36–7.40 (m, 2H), 8.08–8.12 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 38.9, 39.4, 44.6, 45.1, 59.4, 60.7, 93.5, 123.7, 127.1, 127.2, 128.5, 129.3, 141.4, 145.8, 146.7, 153.5, 167.4, 175.3; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 461.17, found: 461.16.



#### trans-Diethyl

**2-(4-Nitrobenzyl)-5-***o***-tolyl-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate** (3b): 88%; yellow solid; IR (film)  $v_{max}$  3395, 2981, 2917, 2850, 1732, 1682, 1601, 1521, 1369, 1346, 1179, 1109, 1017, 856, 756, 727 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 1.12–1.17 (m, 6H), 2.35 (s, 3H), 3.17–3.23 (m, 1H), 3.43–3.48 (m, 2H), 3.75 (d, J =4.4 Hz, 1H), 3.99–4.15 (m, 4H), 4.26 (AB d, J = 16.0 Hz, 1H), 4.36 (AB d, J = 16.0 Hz, 1H), 4.50 (s, 1H), 7.10–7.16 (m, 4H), 7.46 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.1, 14.2, 19.6, 35.6, 39.0, 43.7, 45.3, 59.4, 60.6, 93.8, 123.7, 126.0, 126.3, 126.9, 129.5, 130.5, 135.5, 139.8, 145.8, 146.8, 153.5, 167.4, 175.4; MS (ESI): *m/z* calcd for C<sub>25</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 475.18, found: 475.22.



#### trans-Diethyl

**2-(4-Nitrobenzyl)-5-***m***-tolyl-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate** (3c): 82%; yellow solid; IR (film)  $v_{max}$  3393, 2981, 2918, 2850, 1732, 1686, 1600, 1521, 1346, 1255, 1231, 1203, 1180, 1108, 1030, 857, 783, 737, 703 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.18 (apparent t, 6H), 3.23 (s, 3H), 3.24–3.31 (m, 2H), 3.49 (d, J =12.0 Hz, 1H), 3.85 (d, J = 3.6 Hz, 1H), 4.01–4.13 (m, 4H), 4.24 (AB d, J = 15.6 Hz, 1H), 4.29 (AB d, J = 15.6 Hz, 1H), 4.44 (s, 1H), 6.99 (d, J = 6.8 Hz, 2H), 7.06 (d, J =6.8 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 8.11 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 21.5, 39.0, 39.5, 44.6, 45.3, 59.4, 60.6, 93.6, 123.7, 127.8, 128.0, 128.4, 129.3, 130.1, 138.1, 141.4, 145.8, 146.7, 153.5, 167.5, 175.4; MS (ESI): *m/z* calcd for C<sub>25</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 475.18, found: 475.23.



trans-Diethyl

**2-(4-Nitrobenzyl)-5-***p***-tolyl-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate** (3d): 64%; yellow solid; IR (film)  $v_{max}$  3391, 2981, 2919, 2850, 1732, 1683, 1590, 1520, 1368, 1345, 1263, 1176, 1108, 1080, 1030, 858, 813, 775, 737 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.14–1.19 (m, 6H), 2.33 (s, 3H), 3.25–3.30 (m, 2H), 3.47–3.50 (m, 1H), 3.85 (d, *J* = 2.8 Hz, 1H), 4.00–4.13 (m, 4H), 4.17 (AB d, *J* = 15.6 Hz, 1H), 4.35 (AB d, *J* = 15.6 Hz, 1H), 4.41 (s, 1H), 7.01 (s, 4H), 7.39 (d, *J* = 8.8 Hz, 2H), 8.11 (d, *J* = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 21.0, 38.9, 39.0, 44.7, 45.2, 59.4, 60.7, 93.5, 123.7, 127.1, 129.2, 129.3, 136.7, 138.4, 145.8, 146.7, 153.5, 167.5, 175.3; MS (ESI): *m/z* calcd for C<sub>25</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 475.18, found: 475.17.



#### trans-Diethyl

**5-(2,4-Dimethylphenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarbo xylate (3e)**: 82%; yellow solid; IR (film)  $v_{max}$  2919, 1729, 1600, 1520, 1342, 1181, 1106, 1015, 857 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.13–1.17 (m, 6H), 2.28 (s, 3H), 2.31 (s, 3H), 3.15–3.21 (m, 1H), 3.40–3.46 (m, 2H), 3.72 (d, J = 4.4 Hz, 1H), 3.99–4.15 (m, 4H), 4.23 (AB d, J = 15.6 Hz, 1H), 4.38 (AB d, J = 15.6 Hz, 1H), 4.47 (s, 1H), 6.91–7.03 (m, 3H), 7.45–7.48 (m, 2H), 8.13–8.16 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 14.15, 14.24, 19.5, 20.9, 35.3, 39.0, 43.8, 45.4, 59.4, 60.6, 93.8, 123.7, 125.9, 126.9, 129.5, 131.3, 135.3, 136.5, 136.9, 145.8, 146.7, 153.4, 167.5, 175.5; MS (ESI): *m/z* calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 489.20, found: 489.22.



trans-Diethyl

**5-(2,5-Dimethylphenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarbo xylate (3f)**: 98%; yellow solid; IR (film)  $v_{max}$  3392, 2920, 2849, 1730, 1592, 1520, 1444, 1367, 1345, 1178, 1107, 1028, 856, 812, 735 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.12–1.17 (m, 6H), 2.21 (s, 3H), 2.30 (s, 3H), 3.19–3.22 (m, 1H), 3.40–3.46 (m, 2H), 3.73 (d, *J* = 4.0 Hz, 1H), 4.00–4.13 (m, 4H), 4.25 (AB d, *J* = 12.4 Hz, 1H), 4.39 (AB d, *J* = 12.4 Hz, 1H), 4.50 (s, 1H), 6.92–6.95 (m, 2H), 7.04 (d, *J* = 6.0 Hz, 1H), 7.47 (d, *J* = 6.8 Hz, 2H), 8.14 (d, *J* = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 14.0, 14.1, 19.0, 21.1, 35.7, 38.9, 43.8, 45.3, 59.2, 60.4, 93.8, 123.7, 126.6, 127.4, 129.3, 130.3, 132.2, 135.6, 139.5, 145.7, 146.6, 153.3, 167.3, 175.4; MS (ESI): *m/z* calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 489.20, found: 489.22.



trans-Diethyl

**5-(4-Fluorophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxylat e (3g)**: 76%; yellow solid; IR (film) ν<sub>max</sub> 3387, 2981, 2918, 2850, 1732, 1664, 1600, 1512, 1368, 1345, 1224, 1178, 1162, 1108, 1016, 858, 833, 776, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (apparent t, 6H), 3.23–3.29 (m, 2H), 3.46–3.49 (m, 1H), 3.82 (d, J = 4.0 Hz, 1H), 4.01–4.15 (m, 5H), 4.42 (apparent AB d, 2H), 6.95–7.00 (m, 2H), 7.15–7.18 (m, 2H), 7.40 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 38.89, 38.94, 44.7, 45.4, 59.4, 60.8, 93.5, 115.2, 115.4, 123.7, 128.7, 128.8, 129.3, 145.7, 146.8, 153.5, 167.4, 175.1; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>FN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 479.16, found: 479.11.



trans-Diethyl

**5-(2-Chlorophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxyla te (3h)**: 46%; yellow solid; IR (film)  $v_{max}$  3395, 2982, 2917, 2850, 1733, 1683, 1598, 1521, 1368, 1346, 1244, 1180, 1109, 1034, 858, 758, 735, 706 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.16–1.23 (m, 6H), 3.31–3.35 (m, 1H), 3.48–3.53 (m, 1H), 3.74–3.77 (m, 1H), 3.83 (d, *J* = 2.8 Hz, 1H), 4.03–4.23 (m, 5H), 4.36 (apparent AB d, 2H), 7.13–7.21 (m, 3H), 7.36–7.38 (m, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 8.13 (d, *J* = 6.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 35.7, 38.9, 42.8, 44.0, 59.5, 60.9, 93.4, 123.7, 127.0, 127.8, 128.3, 129.4, 129.7, 133.5, 138.9, 145.6, 146.8, 153.7, 167.4, 174.9; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>ClN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 495.13, found: 495.04.



#### trans-Diethyl

# **5-(3-Chlorophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxyla te (3i)**: 86%; yellow solid; IR (film) v<sub>max</sub> 3396, 2981, 2918, 2850, 1732, 1682, 1597,

1521, 1369, 1346, 1261, 1180, 1108, 1018, 858, 786, 735, 695 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.15–1.21 (m, 6H), 3.26–3.30 (m, 2H), 3.48–3.52 (m, 1H), 3.83 (d, *J* = 3.6, 1H), 4.02–4.15 (m, 4H), 4.24 (AB d, *J* = 15.6 Hz, 1H), 4.31 (AB d, *J* = 15.6 Hz, 1H), 4.45 (s, 1H), 7.07–7.10 (m, 1H), 7.17–7.22 (m, 3H), 7.39 (d, *J* = 8.8 Hz, 2H), 8.11 (d, *J* = 6.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 38.87, 38.93, 44.2, 45.0, 59.5, 60.8, 93.2, 123.8, 125.5, 127.2, 127.3, 129.3, 129.8, 134.4, 143.6, 145.6, 146.8, 153.5, 167.4, 174.9; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>ClN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 495.13, found: 495.18.



#### trans-Diethyl

**5-(4-Chlorophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxyla te (3j)**: 84%; yellow solid; IR (film)  $v_{max}$  3391, 2981, 2918, 2850, 1732, 1683, 1598, 1521, 1494, 1368, 1346, 1261, 1179, 1108, 1094, 1030, 1015, 912, 858, 805, 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.08–1.12 (m, 6H), 3.16–3.22 (m, 2H), 3.22–3.42 (m, 1H), 3.75 (d, *J* = 3.2 Hz, 1H), 3.94–4.08 (m, 5H), 4.35 (apparent AB d, 2H), 7.06 (d, *J* = 8.8 Hz, 2H), 7.18 (dd, *J* = 2, 6.8 Hz, 2H), 7.32 (d, 8.4 Hz, 2H), 8.05 (d, *J* = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 38.9, 44.5, 45.1, 59.5, 60.8, 93.4, 123.7, 128.6, 128.7, 129.3, 132.8, 139.9, 145.6, 146.8, 153.4, 167.4, 175.0; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>ClN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 495.13, found: 495.17.



#### trans-Diethyl

5-(3-Bromophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxyla

te (3k): 58%; yellow solid; IR (film)  $v_{max}$  3379, 2980, 2918, 2850, 1732, 1683, 1594, 1520, 1368, 1346, 1261, 1178, 1109, 1077, 1029, 859, 783, 736, 695 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.16–1.21 (m, 6H), 3.26–3.29 (m, 2H), 3.48–3.53 (m, 1H), 3.83 (d, *J* = 4.0 Hz, 1H), 4.02–4.15 (m, 4H), 4.24 (AB d, *J* = 15.6 Hz, 1H), 4.32 (AB d, *J* = 15.6 Hz, 1H), 4.40 (s, 1H), 7.12–7.18 (m, 2H), 7.37 (apparent t, 4H), 8.13 (d, *J* = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 38.9, 44.2, 45.0, 59.5, 60.9, 93.2, 122.6, 123.8, 126.0, 129.1, 129.3, 130.1, 130.2, 130.3, 143.8, 145.5, 146.8, 153.5, 167.3, 174.9; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>BrN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 539.08, found: 539.13.





**5-(4-Bromophenyl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxyla te (3n)**: 75%; yellow solid; IR (film) ν<sub>max</sub> 3376, 2980, 2918, 2850, 1732, 1683, 1591, 1521, 1491, 1368, 1346, 1262, 1179, 1109, 1076, 1011, 858, 820, 777, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.13–1.21 (m, 6H), 3.22–3.28 (m, 2H), 3.45–3.51 (m, 1H), 3.82 (d, J = 4.0 Hz, 1H), 3.99–4.14 (m, 5H), 4.42 (apparent AB d, 2H), 7.08 (d, J = 8.4 Hz, 2H), 7.38–7.42 (m, 4H), 8.12 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 14.2, 14.3, 38.8, 38.9, 44.4, 45.0, 59.5, 60.8, 93.4, 120.9, 123.8, 129.0, 129.3, 131.6, 140.4, 145.6, 146.8, 153.4, 167.3, 174.9; MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>25</sub>BrN<sub>2</sub>NaO<sub>6</sub> [M + Na]: 539.08, found: 539.13.



trans-Diethyl

5-(Naphth-2-yl)-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate

(**3m**): 84%; yellow solid; IR (film)  $v_{max}$  3391, 2980, 2918, 2850, 1731, 1682, 1599, 1520, 1368, 1345, 1270, 1181, 1107, 1079, 1018, 858, 818, 774, 749, 718 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.14–1.19 (m, 6H), 3.41–3.49 (m, 2H), 3.56–3.60 (m, 1H), 4.01–4.20 (m, 6H), 4.34 (AB d, J = 15.2 Hz, 1H), 4.50 (s, 1H), 7.32–7.36 (m, 3H), 7.44–7.48 (m, 2H), 7.58 (s, 1H), 7.63–7.66 (m, 1H), 7.77–7.82 (m, 2H), 7.99–8.02 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.2, 14.3, 39.0, 39.2, 44.3, 45.0, 59.4, 60.8, 93.2, 123.7, 125.5, 125.7, 125.9, 126.2, 127.5, 127.7, 128.2, 129.3, 132.4, 133.2, 138.7, 145.8, 146.6, 153.6, 167.5, 175.3; MS (ESI): *m/z* calcd for C<sub>28</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 511.18, found: 511.22.



cis-Diethyl

**6-Methyl-2-(4-nitrobenzyl)-1,4,5,6-tetrahydropyridine-3,4-dicarboxylate** (3n): 66%; yellow solid; IR (film)  $v_{max}$  3379, 2981, 2918, 2850, 1732, 1683, 1591, 1521, 1369, 1346, 1261, 1178, 1107, 1030, 859, 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 1.16 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.67–1.75 (m, 1H), 2.15–2.21 (m, 1H), 3.32–3.37 (m, 1H), 3.64 (dd, J = 6.8, 10.4 Hz, 1H), 3.96 (s, 1H), 4.00–4.19 (m, 5H), 4.38 (AB d, J = 15.6 Hz, 1H), 7.44–7.46 (m, 2H), 8.14–8.18 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.24, 14.27, 21.1, 34.1, 39.0, 40.9, 46.2, 59.3, 60.5, 94.6, 123.8, 129.1, 146.0, 146.7, 153.1, 167.3, 175.6; MS (ESI): m/z calcd for C<sub>19</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 399.15, found: 399.18.





yellow solid; IR (film)  $v_{\text{max}}$  3391, 2982, 2933, 2850, 1732, 1683, 1589, 1520, 1368, 1346, 1253, 1181, 1109, 859 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.17 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 6.4 Hz, 3H); 1.84–1.93 (m, 1H), 2.10–2.14 (m, 1H), 3.18–3.24 (m, 2H), 3.74 (d, *J* = 3.2 Hz, 1H), 4.00–4.20 (m, 5H), 4.30 (s, 1H), 4.46 (AB d, *J* = 16.4 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 2H), 8.14 (d, *J* = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  14.4, 24.1, 38.6, 38.9, 39.0, 59.2, 60.6, 93.2, 123.8, 129.2, 146.1, 146.7, 153.2, 167.5, 175.5; MS (ESI): *m/z* calcd for C<sub>18</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 385.14, found: 385.16.

#### [3+3] Annulation of the Deuterium-Labeled Allenoate 2D



An oven-dried 50-mL flask was charged with triphenylphosphine (0.097 mmol), the N-4-nitrobenzenesulfonyl-protected aziridine (0.097 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (10 mL) at room temperature. The deuterium-labeled diethyl 2-vinylidenesuccinate 2D (0.233 mmol) was added to the resulting solution and the mixture was stirred at room temperature. After 36 h, another charge of diethyl 2-vinylidenesuccinate 2D (0.233 mmol) was added; the resulting mixture was stirred for an additional 36 h and then concentrated. The residue was purified through flash column chromatography (EtOAc/hexane = 1:3) to afford the corresponding tetrahydropyridine product. With the aziridine 1a as the starting material, the corresponding tetrahydropyridine 3p was obtained as a yellow solid (trans-isomer, 30.5 mg, 71.4% yield; trans:cis = 9:1). When the aziridine 1b was used, the corresponding product 3q was obtained as a yellow solid (trans-isomer, 35.3 mg, 80.2% yield; trans:cis = 9:1). See pages S36 and S37 for the <sup>1</sup>H NMR spectra of the partially labeled products **3p** and **3q**. We suspect that the deuterium atom on the enamine nitrogen atom (in compounds 3p and 3q) is exchanged to a hydrogen atom in the solvent used for NMR spectroscopy and performed an enamine H/D exchange experiment; see page S19 for the hydrogen/deuterium exchange experiments on the tetrahydropyridine **3a**. Another possible mechanism explaining the loss of the enamine deuterium atom is enamine/imine tautomerization. The solid state structure of **3a** reveals that the ring  $C(sp^2)$ –N and C=C bond distances were 1.343 and 1.378 Å, respectively; i.e., they deviate from typical values, indicating a potential enamine/imine mixture. Typical  $C(sp^2)$ –N, C=N, C=C, and  $C(sp^3)$ – $C(sp^2)$  bond distances are 1.416, 1.279, 1.322, and 1.507 Å, respectively; see: *CRC Handbook of Chemistry and Physics*, 78th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, NY, 1997; Section 9.

[3 + 3] Annulation of the Enantiomerically Pure Aziridine (*S*)-1a. An oven-dried 10-mL flask was charged with triphenylphosphine (30 mg, 0.115 mmol), (*S*)-1a (35 mg, 0.115 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (3 mL) at room temperature. Diethyl 2-vinylidenesuccinate (109 mg, 0.552 mmol) was added to the resulting solution and the mixture was stirred at room temperature for 24 h before being concentrated. The residue was purified through flash column chromatography (EtOAc/hexane = 1:3) to afford the tetrahydropyridine product as a single enantiomer [63.5% yield; >99% ee, determined through SFC analysis (AS-H, MeOH 30%, CO<sub>2</sub> 70%; flow rate: 1.5 mL/min)];  $[\alpha]_D^{20}$  -72.0° (*c* = 1.4, CHCl<sub>3</sub>). See pages S38–41 for HPLC chromatograms of the aziridines 1a and (*S*)-1a and the tetrahydropyridines 3a and (-)-3a.





An oven-dried 10-mL flask was charged with triphenylphosphine (35 mg, 0.134 mmol), the deuterium-labeled aziridine **1a-D** (42 mg, 0.134 mmol), and  $CH_2Cl_2$  (8 mL) at room temperature. Diethyl 2-vinylidenesuccinate **2** (128 mg, 0.643 mmol) was

added to the resulting solution and the mixture was stirred at room temperature for 58 h before being concentrated. The residue was purified through flash column chromatography (EtOAc/hexane = 1:3) to afford the corresponding deuterated tetrahydropyridine **3a-D** (13 mg, 21.7%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.08-1.12 (m, 6H), 3.22-3.27 (m, 2H), 3.42-3.47 (m, 1H), 3.82 (br d, *J*=2.8, 1H), 3.93-4.08 (m, 4H), 4.16 (AB d, *J*=16.0, 1H), 4.25 (AB d, *J*=16.0, 1H), 4.26 (br s, 1H); MS (ESI): *m/z* calcd for C<sub>24</sub>H<sub>18</sub>D<sub>9</sub>N<sub>2</sub>O<sub>6</sub> [M + H]: 448.53, found 448; calcd for C<sub>24</sub>H<sub>17</sub>D<sub>9</sub>N<sub>2</sub>NaO<sub>6</sub> [M + Na]: 470.52, found 470.

[3 + 3] Crossover Annulation of the Aziridine 1a and the Deuterium-Labeled Aziridine 1a-D



An oven-dried 10-mL flask was charged with triphenylphosphine (35 mg, 0.134 mmol), the *N*-4-nitrobenzenesulfonyl-protected aziridine **1a** (20.4 mg, 0.067 mmol), the deuterium-labeled *N*-4-nitrobenzenesulfonyl protected aziridine **1a-D** (21 mg, 0.067 mmol), and  $CH_2Cl_2$  (4 mL) at room temperature. Diethyl 2-vinylidenesuccinate (**2**, 128 mg, 0.643 mmol) was added to the resulting solution and the mixture was

stirred at room temperature for 58 h before being concentrated. The residue was purified through flash column chromatography (EtOAc/hexane = 1:3) to afford the corresponding tetrahydropyridine mixture (26 mg). Mass spectrometric analysis indicated that the product mixture included the compounds **3a** and **3a-D**, but not compound **A** or **B**. The <sup>1</sup>H NMR spectrum indicated that the tetrahydropyridine product mixture contained **3a** and **3a-D** in a ratio of ca. 1:1. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.13–1.25 (m, 12H), 3.28–3.32 (m, 4H), 3.48–3.52 (m, 2H), 3.86 (d, *J* = 3.3, 2H), 4.00–4.13 (m, 8H), 4.20 (AB d, *J* = 15.9 Hz, 2H), 4.32 (AB d, *J* = 15.9 Hz, 2H), 4.56 (br s, 2H), 7.18–7.31 (m, 5H), 7.36 (d, *J* = 7.2 Hz, 2H), 8.08 (d, *J* = 7.2 Hz, 2H). See page S42 for the <sup>1</sup>H NMR spectrum of a mixture of the tetrahydropyridines **3a** and **3a-D** that did not contain compound **A** or **B**.

<sup>31</sup>P NMR Spectrum Revealing Free PPh<sub>3</sub> in the [3 + 3] Annulation Mixture. An oven-dried NMR tube was charged with triphenylphosphine (17.2 mg, 0.066 mmol), the *N*-(*p*-nitrobenzenesulfonyl)aziridine **1a** (20 mg, 0.066 mmol), triethyl phosphite (10 uL, 0.058 mmol), and CD<sub>2</sub>Cl<sub>2</sub> (0.5 mL) at room temperature. Diethyl 2-vinylidenesuccinate (**2**, 55 mg, 0.277 mmol) was added to the resulting solution and the mixture was analyzed using <sup>31</sup>P NMR spectroscopy. Signals representing PPh<sub>3</sub> were present in the spectra of the reaction mixture after even 63 h. Copies of the <sup>31</sup>P NMR spectra recorded after 18 and 63 h are presented on the following page (p S18).































8.5

2.291













# Area % Report

| User:<br>Acquired:<br>Printed: |                                                                   | System<br>3/10/2009 12:27:36 PM<br>3/24/2009 9:39:24 PM |                 |     |     |     |    | 1a (racemic)  |               |     |                                         |     |                                |   |
|--------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------|-----|-----|-----|----|---------------|---------------|-----|-----------------------------------------|-----|--------------------------------|---|
|                                | SPD∜0A Ch1-254nm<br>qihai }3 - hex/MeCN<br>Retention Time<br>Area | 2uL (racemic)                                           |                 |     |     |     |    | 9.98536       | 0.01464       |     |                                         |     |                                | 3 |
|                                | _ Area Percent                                                    |                                                         |                 |     |     |     |    | 34 1198785 46 | 53 1199487 50 |     |                                         |     |                                |   |
| , T<br>1<br>1<br>1             |                                                                   |                                                         |                 |     |     |     |    | -             | 2 7           |     |                                         |     |                                |   |
|                                |                                                                   |                                                         |                 |     |     |     |    |               |               |     |                                         |     |                                |   |
|                                |                                                                   | <br> <br> <br> <br> <br> <br>                           |                 |     |     |     |    |               | ×             |     | <br> <br> <br> <br> <br> <br> <br> <br> |     | <br> <br> <br> <br> <br> <br>  |   |
|                                |                                                                   | ,<br> <br> <br> <br> <br> <br> <br>                     |                 |     |     |     |    |               |               |     |                                         |     |                                | 0 |
|                                |                                                                   | <br> <br> <br> <br> <br> <br>                           |                 |     |     |     |    |               |               |     | <br> <br> <br> <br> <br> <br> <br> <br> |     | ·<br> <br> <br> <br> <br> <br> | · |
| ,                              | .0 3.5 4                                                          | .0 4                                                    | l<br> <br> <br> | 5.0 | 5.5 | 6.0 | .5 | 7.0           | 7.5           | 8.0 | 8.5                                     | 9.0 | 9.5                            |   |

| SPD-20A<br>Ch1-254nm<br>Results |         |        |        |          |
|---------------------------------|---------|--------|--------|----------|
| Retention Time                  | Area    | Area % | Height | Height % |
| 7.340                           | 1198785 | 49.99  | 135104 | 51.90    |
| 7.627                           | 1199487 | 50.01  | 125203 | 48.10    |
| Totals                          |         |        |        |          |
|                                 | 2398272 | 100.00 | 260307 | 100.00   |

Area % Report



| SPD-20A<br>Ch1-254nm<br>Results |         |        |        |          |
|---------------------------------|---------|--------|--------|----------|
| Retention Time                  | Area    | Area % | Height | Height % |
| 6.410                           | 87485   | 1.67   | 8608   | 2.04     |
| 7.260                           | 5145034 | 98.33  | 412611 | 97.96    |
| Totals                          |         |        |        |          |
|                                 | 5232519 | 100.00 | 421219 | 100.00   |



| Index | Name    | Start | Time  | End   | RT Offset | Quantity | Height | Area     | Area    |
|-------|---------|-------|-------|-------|-----------|----------|--------|----------|---------|
|       |         | [Min] | [Min] | [Min] | [Min]     | [% Area] | [µV]   | [µV.Min] | [%]     |
| 1     | UNKNOWN | 19.29 | 20.00 | 20.78 | 0.00      | 46.68    | 153.0  | 78.3     | 46.680  |
| 2     | UNKNOWN | 23.05 | 23.78 | 25.16 | 0.00      | 53.32    | 132.2  | 89.4     | 53.320  |
|       |         |       |       |       |           |          |        |          |         |
| Total |         |       |       |       |           | 100.00   | 285.2  | 167.7    | 100.000 |



| Index | Name    | Start | Time  | End   | RT Offset | Quantity | Height | Area     | Area    |
|-------|---------|-------|-------|-------|-----------|----------|--------|----------|---------|
|       |         | [Min] | [Min] | [Min] | [Min]     | [% Area] | [µV]   | [µV.Min] | [%]     |
| 1     | UNKNOWN | 23.43 | 24.39 | 25.61 | 0.00      | 100.00   | 378.3  | 265.5    | 100.000 |
|       |         |       |       |       |           |          |        |          |         |
| Total |         |       |       |       |           | 100.00   | 378.3  | 265.5    | 100.000 |



## MS Spectrum









## **ORTEP Representations of Compounds 3a and 3n**

Crystallographic data for **3a** and **3n** have been deposited with the Cambridge Crystallographic Data Centre as supplementary numbers CCDC-713484 and -713485. These data can be obtained online free of charge [or from the Cambridge Crystallographic Data Center, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>].

