CHARACTERIZATION AND INHIBITION OF A CLASS II DITERPENE CYCLASE FROM MYCOBACTERIUM TUBERCULOSIS: IMPLICATIONS FOR TUBERCULOSIS

Francis M. Mann[†], Sladjana Prisic^{†,§}, Huayou Hu^{‡,#}, Meimei Xu[†], Robert M. Coates[‡],

and Reuben J. Peters^{†,¶}

From the [†]Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011; and the [‡]Department of Chemistry, University of Illinois, Urbana, IL 61801.

[¶]Address correspondence to: Reuben J. Peters, 4216 Mol. Biol. Bldg., Ames, IA 50011,

FAX: 515-294-8580, E-mail: ripeters@iastate.edu

SUPPLEMENTAL INFORMATION

NMR Structural Analysis of Halimadien-15-ol (3b)

NMR spectra for the edaxadiene (3) product were recorded at 25 °C on a Bruker Avance 700 equipped with a probe with cryogenic detection for ¹H and ¹³C. Structural analysis was undertaken using 1D ¹H, 1D ¹³C, DQF-COSY, HSQC, multiplicity-edited HSQC, HMBC, HMQC-COSY and ROESY spectra acquired at 700 MHz using standard experimental protocols. Through this effort it was possible to verify the structural equivalence of **3b** to that previously reported.

Halimadienol/Tuberculosinol (3b): Carbon numbering as indicated

С	δ _c (ppm)	δ _H (ppm)
1	28.17	1.079(m), 1.748(m)
2	22.99	1.558(2H, m)
3	41.63	1.269(m), 1.397(m)
4	36.67	
5	146.54	
6	117.12	5.547(bt)
7	32.35	1.829(2H, m)
8	34.07	1.512(m)
9	37.61	
10	40.66	2.259(bd, J=12.52)
11	35.70	1.380(m), 1.527(m)
12	33.41	1.873(m), 1.942(m)
13	139.56	
14	124.83	5.422(t)
15	59.80	3.988(d, J=6.45Hz)
16	16.78	1.511(3H, s)
17	15.66	0.807(3H, d, J=6.75)
18	30.43	1.149(3H, s)
19	29.55	1.100(3H, s)
20	16.83	0.694(3H, s)

NMR chemical shift data for 3b

General Aspects, Preparative Procedures, and Characterization Data for 3-AzaGGSPP

General Aspects

Solvents were distilled from the indicated drying agents prior to use. CH₃CN was distilled from P₂O₅ and stored over 3 Å molecular sieves. Et₃N and pyridine were distilled from CaH₂ and stored over KOH. Diethyl chlorophosphate and methanesulfonyl chloride were obtained from Aldrich Chemical Company and used without further purification. Dihydrogen disodium pyrophosphate was obtained from

Sigma Chemical Company and was converted to HOPP(NBu₄)₃ according to a literature procedure reported by Poulter and co-workers.¹ The progress of the reactions was followed by TLC unless stated otherwise. TLC analyses were performed on plastic-backed Merck Kieselgel 60 F254 plate with visualization by UV fluorescence at 254 nm, I₂ stain, or phosphomolybdic acid stain (PMA, 10 % in absolute ethanol) followed by development on a hot plate at 120 °C. Dowex AG 50W-X8 ion exchange resin (H⁺ form) obtained from BioRad was converted to the ammonium form before each chromatography according to a published procedure.¹ Flash chromatography was performed according to the procedure of Still² using Merck 0.040-0.063 mm silica gel.

¹H NMR spectra were acquired on Unity 400 or Unity 500 spectrometers at 400 MHz or 500 MHz in CDCl₃ with CHCl₃ as the internal reference (CHCl₃ = 7.26 ppm) or C₆D₆ with C₆D₅H as the internal reference (C₆D₅H = 7.16 ppm), or CD₃OD with CD₃OH as the internal reference (CD₃OH = 4.78 ppm). ³¹P NMR spectra were recorded with the Unity 400 at 162 MHz in CD₃OD with 85 % H₃PO₄ as the external reference (H₃PO₄ = 0.00 ppm), unless indicated otherwise.

(*E*, *E*, *E*)-15-Aza-14,15-dihydrogeranylgeraniol (6a). The amino alcohol (200 mg) was prepared from (E, E, E)-geranylgeraniol $(2.04 \text{ g})^3$ via 14,15-epoxygeranylgeranyl acetate (5). Terminal hypobromination of GGOAc and conversion to the 14,15-epoxy acetate (790 mg) followed by acid-catalyzed hydrolysis provided the 14,15-diol acetate intermediate (150 mg).^{4,5} NaIO₄ cleavage of the 14,15-diol, reductive amination of the trisnor aldehyde acetate with dimethylamine, and acetate hydrolysis as previously described gave 15-azaGGOH (6a).⁴ The physical properties and NMR spectra agreed with the literature values.⁴

(E, E, E)-Geranylgeranyl Thiolodiphosphate, Ammonium Salt.

The procedure was modeled after a literature description for preparation of the same compound,⁶ except that the meslyate intermediate generated in dry acetonitrile, was used instead of geranylgeranyl bromide. A solution of (*E*, *E*, *E*)-geranylgeraniol³ (30.0 mg , 0.103 mmol) and triethylamine (28.0 μ L, 20.3 mg, 0.201 mmol) in 1.5 mL of dry acetonitrile was stirred and cooled at -30 °C under N₂ as neat methanesulfonyl chloride (12.0 μ L, 17.7 mg, 0.154 mmol) was added slowly. After 30 min at -30 °C, solid tetrabutylammonium thiopyrophosphate salt (230 mg, 0.198 mmol)⁶ and 150 mg of 3Å molecular sieves were added, and the suspension was stirred for another 30 min at same temp. The mixture was warmed up to 0 °C and stirred for 1 h. The solids were removed by filtration, and the filter cake was washed with 30 mL of MeCN. The filtrate was concentrated at room temperature under reduced pressure.

Ion exchange to the ammonium salt was accomplished by dissolving the residue in aqueous buffer composed of 2% v/v 25 mM aqueous NH₄HCO₃ and i-PrOH, and passage of the solution through a Dowex column (2 × 25 cm) in the ammonium form and elution with 50 mL of buffer solution.⁵ The eluate was lyophilized, and the remaining salt was extracted with MeOH (3 x 8 mL). The combined MeOH extracts were evaporated to give 87 mg of the crude product as a white solid. Purification by flash column chromatography on cellulose¹ using MeCN : i-PrOH : 50 mM aqueous NH₄HCO₃ = 2 : 1 :1 afforded 44.0 mg (0.0854 mmol, 83%) of the known thiolodiphosphate^{6b} as a white solid: ³¹P NMR (CD₃OD, 400 MHz, unreferenced) δ 10.60 (d, *J* = 27.2 Hz, 1P), -8.94 (d, *J* = 27.2 Hz, 1P). The ³¹P NMR spectrum also showed a small singlet (7%) attributed to a PPi contaminant.

³¹P NMR Spectrum (CD₃OD, 162 MHz)

(E, E, E)-15-Aza-14, 15-dihydrogeranylgeranyl Thiolodiphosphate (7b).

Reaction of 15-azaGGOH (**6a**, 30.5 mg, 0.104 mmol) (ref 4) with triethylamine, mesyl chloride, and tetrabutylammonium thiopyrophosphate in dry acetonitrile, ion exchange, MeOH extractions, and purification by cellulose chromatography as described above for geranylgeranyl SPP afforded the aza analogue as a white solid: yield 46.0 mg (0.0887 mmol, 85%): ³¹P NMR (CD₃OD, 162 MHz) δ 8.97 (d, *J* = 27.7 Hz, 1P), -10.03 (d, *J* = 27.5 Hz, 1P). ¹H NMR (CD₃OD, 400 MHz) δ 4.6 – 6.0 (m, OH), 3.54 – 3.62 (m, 2H), 3.04 – 3.12 (m, 2H), 2.87 (s, 6H), 1.79 – 2.17 (m, 12H), 1.69 (s, 3H), 1.64 (s, 3H), 1.58 (s, 3H).

¹H NMR Spectrum (CD₃OD, 400 MHz)

References

- 1. Woodside, A. B., Huang, Z., and Poulter, C. D. (1993) Org. Synth. Coll. Vol. 8, 616-620.
- 2. Still, W. C., Kahn, M., and Mitra, A. (1978) J. Org. Chem. 43, 2923-2925.
- 3. Jin, Y., Roberts, F. G., and Coates, R. M. (2007) Org. Synth. 84, 43-57.
- 4. Ravn, M. M., Jin, A. Q., and Coates, R. M. (2000) Eur. J. Org. Chem., 1401-1410.
- 5. Prisic, S., J. Xu, J., Coates, R. M., and Peters, R. J. (2007) ChemBioChem. 8, 869-874.
- 6. (a). Phan, R. M. and Poulter, C. D. (2000) *Org. Lett.* 2, 2287 2289. (b) Phan, R. M. and Poulter, C. D. (2001) *J. Org. Chem.* 66, 6705 6710.