SUPPLEMENTARY MATERIALS

AMINO ACID POSITION-SPECIFIC CONTRIBUTIONS TO AMYLOID β -PROTEIN OLIGOMERIZATION[†]

Samir K. Maji^{1,6}, Rachel R. Ogorzalek Loo^{2,3}, Mohammed Inayathullah¹, Sean M. Spring¹, Sabrina S. Vollers^{1,7}, Margaret M. Condron¹, Gal Bitan^{1,3,4}, Joseph A. Loo^{2,3,5}, and David B. Teplow^{1,3,4}*

From ¹Department of Neurology and ²Department of Biological Chemistry, David Geffen School of Medicine; ³Molecular Biology Institute; ⁴Brain Research Institute; and ⁵Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095

Running title: Control of Aβ oligomerization

⁶Current address: Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland ⁷Current address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655

*Address correspondence to: David B. Teplow, Ph.D., 635 Charles E. Young Drive South (Room 445), Los Angeles, CA 90095-7334; E-Mail: dteplow@ucla.edu

Band ^b	[Υ ¹]Αβ40	Αβ40	[Υ ²⁰]Αβ40	[Υ ³⁰]Αβ40	[Υ ⁴⁰]Αβ40	[Υ ¹]Αβ42	Αβ42	[Υ ²⁰]Αβ42	[Υ ³⁰]Αβ42	[Υ ⁴²]Αβ42
1	0.874	0.845	0.847	0.848	0.852	0.851	0.841	0.850	0.854	0.835
2	0.746	0.703	0.678	0.688	0.701	0.719	0.680	0.654	0.654	0.667
3	0.609	0.578	0.517	0.556	0.563	0.538	0.545	0.540	0.539	0.530
4	0.563	0.460	0.395	0.483	0.486	0.509	0.458	0.43	0.426	0.424
5	0.444	0.367	0.305	0.395	0.451	0.413	0.364	0.322	0.316	0.317
6	0.344	0.318	0.249	0.308	0.390	0.355	0.280	0.224	0.209	0.217
7	0.294	_	_	0.230	0.304	0.216	0.216	0.149	0.126	0.123
8	_	_	_	_	0.223	0.164	_	_	_	_
9	_	_	_	_	0.159	0.123	_	_	_	_

Table S1. Electrophoretic migration of A β oligomers^a

^a R_f values for the bands shown in Fig. 5 are listed. ^bBand numbers are referenced to the monomer band, which is #1, and increase in magnitude with decreasing R_f values.

FIGURE LEGENDS

Fig. S1. Kinetic analysis of CD data. To obtain quantitative insight into the kinetics of the RC $\rightarrow \alpha/\beta \rightarrow \beta$ conformational conversions monitored by CD, we plot the time-dependence of θ_{222} . For systems that display significant population of α -helix states, θ_{222} is a useful estimator of α helix content. For systems that display rapid α -helix $\rightarrow\beta$ -sheet conversions, θ_{222} can be used as an estimator of overall conversion rate, but not α -helix *per se*, because θ_{222} is correlated with $\theta_{215-218}$, a measure of β -sheet content. (A) A β 40. The half-time for the development of α -helix structure is defined as the time at which θ_{222} has a value equal to half the difference between its maximum and minimum values. The time at which maximal α -helix structure occurs is defined by the point of inflection at the θ_{222} minimum. (B) A β 42. Conversions in this system occur at a rate approximately twice that of A β 40. The kinetic analysis thus provides information on the sum of the rates of conversion from RC $\rightarrow \alpha$ and $\alpha \rightarrow \beta$. No minimum is observed in the A β 42 system. This is because CD is especially sensitive to α -helix, which produces a greater absolute value of θ than is seen with β -sheet. For the A β 40 peptides, the α -helix intermediates we have reported before (see Kirkitadze et al. (2001) J. Mol. Biol. 312:1103-1119) can accumulate because of the rate differences between its formation (causing θ_{222} of greater magnitude) and its conversion to fibrils (causing θ_{218} of greater magnitude, but less than that of θ_{222}). In contrast, for A β 42, the maximum α -helix content is low (versus A β 40) and the $\alpha/\beta \rightarrow \beta$ transition occurs rapidly, so that the increasing magnitude of the θ_{218} compensates for the loss of the θ_{222} signal and a minimum is not observed. θ just keeps going down (more negative).

Fig. S2. Frequency distributions of particles examined by EM. Oligomer dimensions were determined by inspection of EM images with lens and graticule. A representative sample was obtained with particle number n=40. Distributions are shown for: (A), diameters of globular forms of un-cross-linked A β 40; (B), diameters of globular forms of cross-linked A β 40; (C), lengths of protofibrillar forms of A β 40; (D), diameters of protofibrillar forms of A β 40; (E), diameters of globular forms of [Tyr⁴⁰]A β 40; (F), lengths of protofibrillar forms of [Tyr⁴⁰]A β 40; and (G), diameters of globular forms of cross-linked [Tyr⁴⁰]A β 40.

Fig. S1A

Fig. S1B

