SUPPLEMENTARY MATERIAL

Identification of Critical Ligand Binding Determinants in *Mycobacterium tuberculosis* APS Reductase

Jiyoung A. Hong[§], Devayani P. Bhave^{††} and Kate S. Carroll^{§,††,‡‡*}

[§]Department of Chemistry, ^{††}Chemical Biology Graduate Program and ^{‡‡}Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109-2216

*Correspondence should be addressed to:

Kate S. Carroll

University of Michigan

Life Sciences Institute

210 Washtenaw Avenue

Ann Arbor, MI 48109-2216

Phone: 734-615-2739

FAX: 734-764-1075

Email: katesc@umich.edu

Running Title: Ligand Recognition in M. tuberculosis APS Reductase

Contents:

Tables S1 – S2 Figures S1 – S4

Ligand	Structure	<i>K</i> _d pH 7.5 [μM]	<i>K</i> _d pH 9.0 [μM]	$\Delta\Delta \mathbf{G}$ [kcal/mol] ^[b]	pKa
5'-AMPN		100	82	-0.16	3.0 (O), 8.15 (N) ^[c]
AMPNP		257	110	-0.53	7.7 (O), 8.25 (N) ²
AMPPN		410	56.8	-1.2	3.0 (O), 8.15 (N) ^[c]

Table S1. Ligand dissociation constants for nitrogen-containing ligands at pH 7.5 and pH 9.0

 with APS reductase.^[a]

^[a] For ligands in this table values of K_i were determined at pH 7.5 or 9.0 under single turnover conditions from the dependence of the observed rate constant at a given inhibitor concentration under conditions of subsaturating APS, such that K_i is equal to the K_d . Each value reflects the average of at least two independent experiments, and the standard deviation was less than 15% of the value of the mean. Kinetic data were nonlinear-least squares fit to a model of competitive inhibition. ^[b] Energetic difference in affinity of ligand at pH 9.0 relative to pH 7.5, $\Delta\Delta G = - RT \ln(K_d^{9.0}/K_d^{7.5})$. ^[c] pKa estimate approximated from value for phosphoramidic acid³.

Ligand	MgCl ₂ [mM]	<i>K</i> _d [μM]	∆∆G [kcal/mol] ^[b]
AMP	0	5.4	N/A
	0.5	21	0.82
	2.0	31	1.0
ADP	0	4.3	N/A
	0.5	7.3	0.32
	2.0	20	0.93

Table S2. Ligand dissociation constants for AMP and ADP with APS reductase in the presence and absence of MgCl₂.^[a]

^[a] For ligands in this table values of K_i were determined at pH 7.5 and the concentration of MgCl₂ indicated under single turnover conditions from the dependence of the observed rate constant at a given inhibitor concentration under conditions of subsaturating APS, such that K_i is equal to the K_d . Each value reflects the average of at least two independent experiments, and the standard deviation was less than 15% of the value of the mean. Kinetic data were nonlinear-least squares fit to a model of competitive inhibition. ^[b] Energetic difference in affinity for ligand with magnesium relative to without metal ion, $\Delta\Delta G = -RT \ln(K_d^{+MgCl2}/K_d^{-MgCl2})$.

References

1. Jaffe, E. K.; Cohn, M. ³¹P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg²⁺ binding. *Biochemistry* **1978**, 17, 652-7.

2. Reynolds, M. A.; Gerlt, J. A.; Demou, P. C.; Oppenheimer, N. J.; Kenyon, G. L. N-15 and O-17 NMR-studies of the proton binding-sites in imidodiphosphate, tetraethyl imidodiphosphate, and adenylyl imidodiphosphate. *J. Am. Chem. Soc.* **1983**, 105, 6475-81.

3. Chanley, J. D.; Feageson, E. A study of hydrolysis of phosphoramides .2. Solvolysis of phosphoramidic acid and comparison with phosphate esters. *J. Am. Chem. Soc.* **1963**, 85, 1181-90.

Figure Legends

Figure S1. Structure based sequence alignment of APS reductases from *Pseudomonas aeruginosa, Mycobacterium tuberculosis* and *Saccharomyces cerevisiae*. The ClustalW Multiple Sequence Alignment program was used. Strictly conserved residues are outlined in red, red letters indicate conserved residues and conserved regions are boxed in blue. Alignment picture was rendered with the server ESPript 2.2 (http://espript.ibcp.fr).

Figure S2. The apparent affinity, $K_{1/2}$, of APS reductase in single turnover experiment. The affinity of APS reductase (E) for APS was determined from the dependence of the observed rate constant for *S*-sulfocysteine formation on protein concentration according to: $K_{obs} = K_{max} \times \left(\frac{[E]}{K_{1/2} + [E]}\right)$. In this equation, k_{obs} is the observed rate constant at a particular

protein concentration, k_{max} is the maximal rate constant with saturating protein, and $K_{1/2}$ is the protein concentration that provides half the maximal rate. Because the chemical step is ratedetermining for *S*-sulfocysteine formation, k_{max} is equal to the rate constant for the reaction of the E•APS complex, and $K_{1/2}$ is equal to the dissociation constant (K_d) of APS for APS reductase. The concentration of active protein was determined by direct titration with a high concentration of APS (*i.e.* [APS] >> K_d).

Figure S3. pH dependence for ADP β S (A) and AMPS (B) binding. The association equilibrium constant, ($K_a = 1/K_d$) is plotted as a function of pH. Values of K_d were determined by inhibition of APS reduction (pH 6.0-9.5). See methods for details. (A) The pH dependence for ADP β S binding. Nonlinear-least-squares fit of the data to a model for a single ionization gave pK_a

values of 5.8 ± 0.15 . The pK_a of ADP β S in solution is 5.2^1 . (B) The pH dependence for AMPS binding. The dashed line represents the best fit of a model for a single ionization and yields a pK_a of 7.7 ± 0.15 . The pKa of AMPS in solution is 5.3^1 .

Figure S4. The radioactive assay for APS reductase. (A) The reaction progress curve for APS reductase. Under the subsaturating concentration of substrate, the reaction is described by the apparent second-order rate constant, k_{cat}/K_m , which under the conditions of this assay is $\sim 2 \times 10^6$ M⁻¹s⁻¹. (B) AMP inhibits APS reductase activity. Nonlinear least squares fit to a model of competitive inhibition gives a K_d value of 5.4 μ M.

Pseudomonas_aeruginosa Pseudomonas_aeruginosa Mycobacterium_tuberculosis Saccharomyces_cerevisiae	1 1 1	MLPFATIP MSGETTRLTEP	ATERN <mark>SA</mark> AQH <mark>QD</mark> P QLREL <mark>AA</mark> RGAAEL MKTYHLNND	<u>QQQ</u> SP <mark>MSQ</mark> PFDLPA DGATATDMLRW IIVTQEQLDHW	αl 202020 2020 LASSLADKSPOD TDETFGDIGGAGC NEQLIKLETPQE	α2 200000000 LKAAFEHFGDE GVSGHRGWTTC IAWSIVTFPHI	βI ELWISFSGAEDV CNYVVASNMADA FQTTAFGLTGL
Pseudomonas_aeruginosa Pseudomonas_aeruginosa Mycobacterium_tuberculosis Saccharomyces_cerevisiae	68 71 56	α3 <u>VLVDMAWKLNR</u> <u>VLVDLAAKVRP</u> <u>VTIDMLSKLSE</u>	β2 NVKVFSLDTG GVPVIFLDTG KYYMPELLFIDTL	α4 <u>QQQQQQQQ</u> RLHPETYRFID YHFVETIGTRD HHFPQTLTLKN	<u>200000</u> • • QVREHYGIz AIESUYDVF EIEKKYYQPKNQ7		a5 20000000 Q EPLVKEKGLFS 20DELLGKDL EADFASKYGDF
Pseudomonas_aeruginosa Pseudomonas_aeruginosa Mycobacterium_tuberculosis Saccharomyces_cerevisiae	131 133 126	a6 a7 0000 00000 FYRDGHGECCG FARNPH.ECCR LWEKDDDKYDY	a8 200 20002000 TRKTEPLKKKLAG LRKVVPLGKTLRG LAKVEPAHRAYKE	β4 VRAWATGQ RR YSAWVTGL RR LHISAVFTGRR	ηΙ 오፬ DQSPG <mark>TRSQVA</mark> VI VDAP. (TRANAPLV K <mark>SQ</mark> GS <mark>AR</mark> SQLSI)	β5 TTT EIDGAFSTPEK SFDETFK EIDELNG	β6 EVKENPLSSM LVKVNPLAAW ILKINPLINW
Pseudomonas_aeruginosa Pseudomonas_aeruginosa Mycobacterium_tuberculosis Saccharomyces_cerevisiae	200 195 191	α9 <u>2000000000</u> TSEEVWGYIRM TDQDVQEYIAD TFEQVKQYIDA	n2 2 2 1 ELPYNSLHERGY NDVLVNPLVREGY NNVPYNELLDLGY	η3 2.0.0 ISIGCEPCTRP PSIGCAPCTAK RSIGDYHSTOP	η4 TT <u>2020</u> T VLPNOHEREGRW PAEGADERSGRWC VKEGEDERAGRWF	T IWEEATHKBCGI GLAKTBCGI GKAKTBCGI	H <mark>AGNL</mark> ISKA HASLE HEASRFAQFLK
Pseudomonas_aeruginosa Pseudomonas_aeruginosa Mycobacterium_tuberculosis Saccharomyces_cerevisiae	259	 QDA					

Figure S1

Figure S2

Figure S3

Figure S4