Biophysical Journal, Volume 97

Supporting Material

Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition

Tatas H.P. Brotosudarmo, Ralf Kunz, Paul Boehm, Alastair T. Gardiner, Vladimira Moulisova, Richard J. Cogdell, and Juergen Koehler

Supplementary Material

	LH2*	LH3§	Mixed LH2-LH3†
R_{α} (Å)	26.09	26.02	26.02
R_{β} (Å)	26.92	26.95	26.92
A_{α} (rad)	-0.2043	-0.2015	-0.2015
A_{β} (rad)	0.1566	0.1592	0.1566
Π_{α} (rad)	-3.4957	-3.4598	-3.4598
Π_{β} (rad)	-0.5058	-0.5620	-0.5058
Φ_{α} (rad)	-0.1361	-0.0801	-0.0801
Φ_{β} (rad)	-0.1284	-0.1288	-0.1284
dH (Å)	0.00725	-0.0785	0.00725
$V_{n,i}; V_{n,e} (cm^{-1})$	254 ^a ;226 ^a	256 ^b ;210 ^b	270°;230°
$W_{\alpha}; W_{\beta} (cm^{-1})$	-35^{a} ;-26 ^a	-38 ^b ;22 ^b	-38°;-25°

Note: R_{α} and R_{β} , radius of α - and β -bound Bchl *a* circle in xy-plane; A_{α} and A_{β} , geometrical angle of the pigment of α - and β - bound Bchl *a* in xy-plane; Π_{α} and Π_{β} , in-plane dipole tilt from circular tangent of the α - and β - bound Bchl *a* in xy-plane; Φ_{α} and Φ_{β} , out-of-plane dipole tilt of the α - and β - bound Bchl *a* in z-plane; dH, height differences between centres α - and β - unit in z-plane. $V_{n,i}$ and $V_{n,e}$, the nearest-neighbour intra- and inter-dimer interaction; W_{α} ; W_{β} , the α -next-nearest-neighbour interaction and the β -next-nearest-neighbour interaction

* McDermott, S.M., et al., 1995, *Nature* 375, 517-521 and Papiz, M.Z., et al., 2003, *J Mol Biol* 326, 1523-1538.§ McLuskey, K., et al., 2001, Biochemistry 40(30), 8783-8789.

^aHofmann, C., et al., 2004, *Chem Phys Lett* 395, 373-378. ^bde Ruijter, W.P.F., et al.,2007, *Chem Phys* 341, 320-325. ^{†°} This work

Table S1.The coordinate of the arrangement of Bchl *a* molecules in an LH2complex according to the x-ray structural data.

Figure S1. Room-temperature absorption spectra of *Rps. palustris* 2.1.6 grown at high-light (dashed line) and at low-light intensity (solid line). The absorption spectra are normalised at the Q_x -band around 590 nm.

Figure S2. A schematic representation of the transition-dipole moments and the coordinate arrangement of the α - and β -bound Bchl a molecules in the xyplane (left) and zy-plane (right). The $|n_{\alpha}\rangle$ etc. correspond to the wavefunctions of the electronically excited state localised on the α -bound Bchl a molecule in dimer n, respectively. The strongest contributions to the interaction result from the matrix elements for the intradimer nearestneighbour interaction V_{n,i}, the interdimer nearest neighbour interaction $V_{n,e}$, the α -next-nearest-neighbour interaction W_{α} , and the β -next-nearestneighbour interaction W_{β} , respectively. The geometrical arrangement of the α - and β -bound Bchl *a* molecules are defined by the radius of α - and β -unit circle in xy-plane R_u (u = α , β), the geometrical angle of the pigment of α - and β -unit in xy-plane A_u, the in-plane tilt of the transitiondipole moment of the α - and β -Bchl *a* from the circular tangent in xyplane Π_u , the height differences between the centres of the α - and β -Bchl a in the z-plane dH_u, and the out-of-plane tilt of the transition-dipole moment of the α - and β -Bchl a in the z-plane Φ . The actual values of these parameters are summarised in table 1 together with the respective data for LH2 and LH3 from Rhodopseudomonas acidophila. The circles with the dashed line help to orient our eyes.