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1st Editorial Decision 05 May 2009 

Thank you for submitting your manuscript for consideration by the EMBO Journal. First, please let 
me apologise for the unusually long time taken for us to get back to you with a decision. However, I 
have now received the comments of three referees, which are enclosed. As you will see, all three 
referees find your work interesting and are broadly in favour of publication. However, a number of 
issues - primarily requiring changes to the text rather than additional experiments - first need to be 
resolved in a revised version of your manuscript. In particular, I would like to draw your attention to 
the comments of referee 2 regarding the accessibility of your manuscript to the non-specialist. In 
addition, all three referees highlight a number of areas that would benefit from further discussion. 
Given that your manuscript is currently significantly under our length limit, it should not be too 
much of a problem to extend the discussion of your results along the lines suggested by the referees. 
 
I would therefore like to invite you to submit a revised version of the manuscript, addressing all the 
comments of all three reviewers. I should add that it is EMBO Journal policy to allow only a single 
round of revision. Acceptance of your manuscript will thus depend on the completeness of your 
responses included in the next, final version of the manuscript. 
 
Thank you for the opportunity to consider your work for publication. I look forward to your 
revision. 
 
Yours sincerely, 
  
Editor 
The EMBO Journal 
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REFEREE REPORTS: 
 
 
Referee #1 (Remarks to the Author): 
 
This study by Ader et al directly addresses a fundamentally important concept in K+ channel gating 
i.e. the link between the gate at the selectivity filter and the helix-bundle crossing (HBC) gate. A 
powerful combination of electrophysiological and ssNMR data are combined to propose an 
attractive hypothesis for a gating cycle. They observed protonation of E118/120 at the HBC 
indicating an important role for these residues in the pH-gating mechanism and the study also 
highlights an important mechanistic difference in the way KTX and porphyrin block the channel. 
 
The title suggests that the authors are able to directly visualize ions in the inactivation gate, but this 
is not the case. They detect a K+ sensitivity to the processes they measure. However, they do not 
demonstrate that it is the direct effect of K+ ions within filter that exerts this effect. It may well be 
the most logical explanation, but has not been shown directly in this study. I would suggest the title 
be rephrased to take this into account and perhaps emphasize the link between the two gates. Also, 
are the authors able to correlate their results on K+ sensitivity with the ionic sensitivity for KcsA 
which has been reported previously. Although this point is mentioned it is not discussed in any great 
detail. 
 
A major weakness of the study is that they are unable to provide any direct structural mechanism for 
the observed linkage between the filter and HBC gates. It has been known for some time that 
functional linkage between these gates exists, but so far no structural explanation has been 
presented. The current study goes further than many previous studies in this area as it provide direct 
evidence for a correlated movement of these gates, but does not propose a clear explanation of how 
they are linked. The authors detect movement of residues 99-101 which are intriguingly close to the 
T/V residues of the selectivity filter which are observed to collapse during inactivation. Is it 
possible that a direct physical interaction between this part of TM2 and the pore-helix is responsible 
for a direct mechanical coupling of the two gates? This intriguing possibility has not been properly 
explored or discussed. 
 
 
Referee #2 (Remarks to the Author): 
 
The manuscript by Ader et al. seeks to describe the gating of a KcsA-Kv1.3 chimera and its 
dependence on permeant ions and to demonstrate coupling between inactivation and activation 
gates. The authors spectroscopically (ssNMR) identified several major gating states of the channel 
and attempted to correlate them with electrophysiological data. The premise of the study is 
interesting, the combination of techniques seemed promising, but the manuscript did not meet 
expectations mainly because the data is not well presented and explained, and as a result the 
message of the paper is vague and unclear. 
 
First, the authors use electrophysiological current recordings to show that the gating of the chimera 
is affected by internal and external K. External K appears to slow down pH-induced inactivation 
while internal K accelerates it. The former is interpreted to mean that occupancy of an external K 
binding site keeps the channel from collapsing while the latter suggests that occupancy of an 
internal K binding site is responsible for closing the channel activation gate rather than the 
inactivation gate (this interpretation is not supported by the data presented to this point). These 
sided pH and K-induced electrophysiological changes at the gates are further probed with ssNMR 
chemical shift mapping. It is concluded that acidic pH leads to conformational changes at the gate 
and selectivity filter only in the absence of K. The protonation states of the filter and activation gate 
glutamates appear to also be K-sensitive, suggesting that in the presence of K, the activation gate is 
always closed, independent of pH. This conclusion is a bit odd, since it is known that one can record 
from KcsA in lipid bilayers in high K (above 50 mM K) and the Po is pH-dependent. The authors 
need to discuss how their results compare with already existing data on KcsA and how the 
conditions of their NMR experiments correlate with E. Perozo's EPR studies on KcsA (they also 
probed activation gate conformations). Furthermore, the authors need to briefly describe the 
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chimeric channel they are working with and how it was constructed. The reader should not need to 
go to a different paper to figure out what KcsA variant the paper is on. 
 
Lastly, the authors claim they can understand coupling between the activation and inactivation gates 
by spectroscopically observing channels complexed with either porphyrin or kaliotoxin, that 
stabilize either a non conductive or a conductive conformation of the selectivity filter, respectively. 
The porphyrin-bound channel appears to be in a closed-collapsed form at ph7.5 and open-collapsed 
at ph4. The experimental evidence for gate coupling (interactions between the side chains of the 
residues in the filter) needs to be explained better as it is not clear to this reviewer. This appears to 
be a major point of the paper and should be given more attention. Furthermore, the kaliotoxin-
channel experiments are not well presented either. It appears that the activation gate is always 
closed, even at ph4, in these channels forced in a conductive conformation by kaliotoxin. However, 
the message is unclear, and the effects are not readily apparent from a figure. 
 
Other major points: 
 
1) The authors need to make an effort to present their results and discuss them in a more integrated 
and focused way as they go along. Right now, the paper appears disjointed since the 
electrophysiology and the NMR are presented separately, with few parallels made. 
2) The authors try to make an important point that in the presence of K the activation gate is 
predominantly closed (using ssNMR). This needs to be discussed a bit more because is not clear 
what the authors think is going on and how to relate this to electrophysiology. 
3) One predicts to also see a less collapsed filter in high K than in low K. The authors do not discuss 
how their spectroscopic results correlate with the external K effects on inactivation seen 
electrophysiologically. 
4) There is a histidine that was also implicated in pH sensing by an NMR study and an 
electrophysiology study. The authors only focus on the glutamates. The changes in the protonation 
states of this histidine and its K and pH dependence need to be briefly discussed. 
5) Page 10 top: "these results also demonstrate that potassium sensitivity of the channel pore 
domain changes remarkably with the lipid or detergent environment". This sentence appears out of 
the blue. I don't see where these results are shown. 
 
 
Referee #3 (Remarks to the Author): 
 
In this work, the authors studied the activation and inactivation gating states of the chimeric KcsA-
Kv1.3 channel using inside-out patch clamp electrophysiology from proteoliposomes and solid state 
NMR in lipid bilayers by tracking K+- and pH-dependent changes in protein conformation and side 
chain protonation. In addition, using the external pore blockers (1) tetraphenyl porphyrin derivative, 
which traps a collapsed, non-conductive conformation of the selectivity filter and (2) kaliotoxin, 
which stabilizes a conductive filter-conformation, they probed the coupling of the lower activation 
gate (helix bundles) and the upper inactivation gate (selectivity filter) by ssNMR. The results show 
that pH-induced activation is correlated with protonation of glutamate residues at or near the 
activation gate. In the absence of K+, acidic pH opens the KcsA-Kv1.3 channel and renders the 
selectivity-filter vulnerable to inactivation. In the presence of 50 mM K+, acidic pH stabilizes, a 
closed activation gate and a conductive filter upper gate, suggesting that the probability of 
activation-gate opening at acidic pH is K+-sensitive. The authors suggest that the two gates are 
coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation gate 
opening. 
This manuscript is interesting and represents an important work since it addresses the issue of the 
coupling between the activation and inactivation gates of a K+ channel. The data reflect an 
extensive study that is technically well done and clearly described. The experiments are well-
controlled and most of the interpretations of the data are warranted. The findings are a valuable 
contribution to the knowledge of the coupling between ion channel permeation and gating. 
However, I have some concerns with specific issues that should be clarified. 
1- Based on their electrophysiological data shown in Figure 1 and previous ssNMR results (Ader et 
al, 2008), the authors conclude that occupancy of an internal K+-binding site regulates activation-
gate closure. However, the authors clearly show that increasing intracellular K+ accelerates the 
inactivation rate of the channel, which implies that the internal K+ binding site also regulates the 
inactivation gate closure. This issue should be clarified since ssNMR and inside-out recording 
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represent different experimental settings. 
2- The authors conclude page 9 that the probability of activation-gate opening at acidic pH is K+-
sensitive and they link the observed internal K+ binding site to the 
closed conformation of the activation gate with previous electrophysiological data showing a low 
open probability (Po = ~ 0.06) for the activated KcsA-Kv1.3 channel at steady-state (Ader et al, 
2008). In the work of Cordero-Morales et al (NSMB, 2006), the open probability of KcsA 
determined at 200 mM K+ (in symmetrical solutions) is found to match to the voltage-dependence 
of inactivation (see Figure 1 of the paper). Hence, a voltage-driven relief of steady-state inactivation 
accounts for an increase in open probability resulting from voltage depolarization. Cordero-Morales 
et al (NSMB, 2006) propose a mechanism for voltage-dependent gating at the selectivity filter. In 
the current manuscript, it will be important that the authors address the issue of the K+-sensitivity 
versus voltage-sensitivity of the inactivation gate. 
Minor: In supplementary figures 1 and 2, the activation and inactivation time constants are 
inappropriately expressed as (s-1) and should be rather expressed as (s). 
 
 
 
 
1st Revision - authors' response 29 June 2009 

 

A: Ref 1 asks us to change the title 
 

We have modified the title to: 
 

Coupling of activation and inactivation gate in a K+ channel: potassium and ligand 
sensitivity 
 

B: Ref. 1 suggests additional comments about the K+ sensitivity in reference to the ionic strength 
We fully agree with the reviewer that both parameters are of critical relevance. This aspect is now 
further discussed on pages 16/17, where we write: 
 

Note that the overall ionic strength, which has been shown to influence channel open 
probability (Heginbotham et al, 1998), was kept constant in our experiments. Such a strategy 
also eliminates other side effects, for example related to surface potential or mechanical 
stability of the proteoliposome. Therefore, the observed K+ effects on channel gating can be 
traced to potassium itself. Previous reports attributed low channel open probability at acidic 
pH to an open-inactivated state as seen in ssNMR experiments in low (< 1 mM) K+ 
concentrations (Blunck et al, 2006; Cordero-Morales et al, 2006b; Liu et al, 2001; Perozo et 
al, 1999). In light of the results presented here, the exact potassium concentrations, most 
likely also the lipidic environments used (Valiyaveetil et al, 2002), seem of crucial relevance 
for comparing results of different structure-based functional studies. 
 

C: Reviewers 1 and 2 ask us to extend our discussion of the structural aspects of gate coupling in 
relationship to our ssNMR analysis. 
 

Firstly, we discuss now in further detail the structural implications of the chemical-shift changes 
seen in our ssNMR spectra. In particular, we distinguish between backbone and side-chain 
chemical-shifts. For the latter ones, a direct structural interpretation is not yet possible. 
Nevertheless, as a spectroscopic parameter that probes the local chemical environment, side-chain 
chemical shifts are sensitive to local structural rearrangements. Furthermore, we have previously 
found that both chemical-shifts and through-space distances speak in favor of close resemblance of 
the pore conformations of KcsA and KcsA-Kv1.3 in the closed state. With these observations in 
mind, we now write on page 12: 

 
Side chain resonances of the lower selectivity filter and pore helix (Thr72-Thr75) are only 
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seen to shift together with resonances originating from the gating hinge. This suggests that 
these side chains are part of an interaction network coupling inactivation and activation gate. 
 

on pages 13/14: 
 

The data indicate that KTX binding and high K+ concentrations have analogous effects on 
KcsA-Kv1.3 gating states, preserving the channel in a closed-conductive conformation in the 
steady state even at pH 4.0. Table 1 provides a summary of gating and protonation states 
observed for free and ligand-bound KcsA-Kv1.3 under different [K+] and pH conditions. 
 

and finally on page 17/18: 
 

We have previously shown that ssNMR chemical-shift and through-space distance data 
obtained on KcsA-Kv1.3 at pH 7.5 (Ader et al, 2008) are in good agreement with the closed-
conductive (C) state of the KcsA channel as seen in the crystal structure (PDB ID 1K4C). 
There, side chains of residues in pore-helix and lower selectivity filter on the one hand, and 
TM2 gating hinge region on the other hand are in close spatial proximity, possibly forming 
an interconnected network crucial for gate coupling. We observed in our ssNMR data 
synchronized pH-dependent chemical-shift changes in side chain nuclei of residues from 
both regions, e.g. Ile100 C∂ 1 and Thr75 C ∂2 which are less than 5Å apart in the KcsA X-
ray structure (Zhou et al, 2001). This suggests that the respective amino acids are part of such 
a coupling network and that conformational rearrangements during opening of the activation 
gate, where the inner helices swing open, are conveyed to the inactivation gate via the gating 
hinge region. While our data at this stage cannot provide a high-resolution structural view of 
the coupling mechanism, we were able to identify residues that are key players for gate 
coupling based on chemical-shift changes, suggesting that the two gates interact sterically on 
the side chain level. 
(...) 
Hence, we found that KTX binding similar to high [K+] stabilizes a closed activation gate at 
acidic pH. K+ binding sites 2-4 of the selectivity filter, which are affected by porphyrin but 
not by KTX binding (Fig. 5), are prime candidates for the internal high-affinity binding site 
that influences activation gating as seen by electrophysiological and ssNMR experiments. 

 
For further clarification, we also added Table 1 in our revised version. This table summarizes our 
ssNMR-based analysis of channel conformation and protonation states that we conducted for free 
and ligand bound KcsA-Kv1.3 under different [K+] and pH conditions. The corresponding table 
caption reads as 

 
Table 1. Summary of channel states observed under different [K+] and pH conditions for free 
and ligand-bound KcsA-Kv1.3 reconstituted in asolectin liposomes. n.d.: not determined, a: 
chemical shift changes indicate adaptation of the selectivity filter conformation due to toxin 
binding as reported previously (Lange et al, 2006). 
 

 

D: Refs. 1-3 ask us to further comment on the relationship between ssNMR experiments and 
electrophysiological data, in particular regarding the voltage sensitivity of gating 

 
We strongly agree with the reviewers that such a clarification is necessary. Correspondingly we 
have added on page 17 an entire paragraph: 

 
It is also important to note that electrochemical gradients as present in electrophysiology 
have so far not been reproduced in structural studies. For this reason, we have not attempted 
to study the voltage sensitivity of KcsA-Kv1.3 gating (Cordero-Morales et al, 2006a) by 
ssNMR on a structural level. Conversely, an electrochemical gradient generated either by a 
gradient of K+ or voltage across the lipid bilayer is obligatory for functional studies by 
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electrophysiology. Thus, our strategy was to combine functional experiments on KcsA-Kv1.3 
in asymmetric [K+] and transmembrane voltage conditions with ssNMR data on K+-, pH- 
and ligand-dependence of KcsA-Kv1.3 steady-state conformation. This allowed us to 
delineate the influence of K+ on activation and inactivation gates both under equilibrium and 
nonequilibrium conditions, yielding a coherent picture of KcsA-Kv1.3 channel gating. While 
potassium channel gating proceeds via an open-inactivated state, as established in 
electrophysiological experiments (Fig. 1 a; (Chakrapani et al, 2007a; Kurata & Fedida, 
2006)), our data show that, in the absence of transmembrane voltage, the steady-state 
conformation of KcsA-Kv1.3 in asolectin liposomes is closed-conductive even at pH 4.0 if 
millimolar (  10 mM) K+ concentrations are present. 

 
Furthermore, we emphasize during the discussion of the K+-sensitivity of Glu71 protonation on 
pages 15/16 that this residue also entails voltage sensitivity to the inactivation gate as found by 
Perozo and co-workers. 
 

Substitution of Glu71 by alanine prevents entry into the inactivated state and essentially 
abolishes the voltage sensitivity of KcsA gating (Cordero-Morales et al, 2006a; Cordero-
Morales et al, 2007). Using ssNMR spectroscopy, we could directly show that protonation of 
Glu71 correlates with inactivation gate closure, consistent with a crucial role of this residue 
in pH-, K+-, and voltage-sensitivity of KcsA inactivation. 
 

 

E: Ref. 2 asks us to compare our data to published work on KcsA, for example by Perozo et al. 
 

While previous electrophysiological investigations of KcsA mostly employed high millimolar [K+] 
in the presence of electrochemical gradients, the buffer conditions used for structural investigations 
of KcsA channel opening varied or were not reported. Perozo et al. described buffer conditions used 
for channel opening such as 50 mM citrate phosphate buffer (Science, 1999 and Nature Structural 
Biology, 2001) or PBS buffer (J. Gen. Physiol. 2006). From this information, no conclusions about 
[K+] and the related K+-dependency of steady-state channel opening can be drawn. Our present 
study investigated steady-state channel states systematically as a function of [K+] and emphasizes 
the need to consider [K+] if structural studies are compared. Therefore, we included the following 
statement on page 17: 
 

Previous reports attributed low channel open probability at acidic pH to an open-inactivated 
state as seen in ssNMR experiments in low (< 1 mM) K+ concentrations (Blunck et al, 2006; 
Cordero-Morales et al, 2006b; Liu et al, 2001; Perozo et al, 1999). In light of the results 
presented here, the exact potassium concentrations, most likely also the lipidic environments 
used (Valiyaveetil et al, 2002), seem of crucial relevance for comparing results of different 
structure-based functional studies. 

 

 
F: Ref. 2 asks us to introduce KcsA-Kv1.3 

 
For this reason, we included an additional statement on page 5: 

 
KcsA-Kv1.3 contains a high affinity binding site for the scorpion toxin kaliotoxin (KTX) 
which was generated by replacing eleven amino acid residues in the extracellular loop of the 
KcsA pore domain by those of Kv1.3 (Legros et al, 2000; Legros et al, 2002). 
 

G: Ref. 2 asks us to present electrophysiological and ssNMR data in a more joint manner 
 

We feel that presenting results obtained by different biophysical techniques in a concerted 
manner can be challenging. After careful consideration we believe that reporting results in a 
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successive manner and linking together their common implications in the discussion session 
is most appropriate in our case. To emphasize the experimental differences but also the joint 
consequences of our work we added or changed several paragraphs in the result and 
discussion sections of our manuscript. 
On page 8 we reason why the distinct K+ events apparent from electrophysiology necessitate 
a structural characterization by ssNMR. 

 
The data shows that KcsA-Kv1.3 channel inactivation is over 100 fold more sensitive to 
[K+]in than to [K+]out. It suggested that occupation of an internal and external K+ binding 
site modulates KcsA-Kv1.3 channel gating. This implies that equilibria between activated 
and inactivated channel states, which are influenced by changes in [K+]in and [K+]out, are 
correlated with K+-sensitive conformational rearrangements in the KcsA-Kv1.3 channel. To 
investigate this K+ sensitivity of KcsA-Kv1.3 conformational states on a structural level, we 
employed ssNMR spectroscopy to obtain information on KcsA-Kv1.3 in the presence of 
different K+ concentrations. 
 

On page 9 joint implications of functional and structural studies are stated. 
 

These ssNMR results had two important implications. First, acidic pH, which opens the 
KcsA-Kv1.3 channel, renders the selectivity-filter vulnerable to inactivation. Second, the 
probability of activation-gate opening at acidic pH is K+-sensitive. The data demonstrate that 
the prevailing KcsA-Kv1.3 conformation observed at pH 4.0 shifts from the open-collapsed 
(I) state to the closed-conductive (C) state of the channel (Fig. 2D) in the presence of high 
millimolar K+-concentrations. This complements our electrophysiological studies on the K+ 
dependency of KcsA-Kv1.3 channel inactivation and shows that both activation and 
inactivation gate of KcsA-Kv1.3 respond to changes in potassium concentration at a 
structural level. 

 
On page 15, we added a paragraph, indicated under D, discussing important experimental 
differences between the techniques employed and outline our strategy allowing us to interpret 
functional and structural data in a joined manner. 

 

 
H: Ref. 2 mentions His25 as an additional residue implicated in pH sensing. 
 

Indeed, NMR and mutational data suggest a role of His25 in pH sensing. Due to spectral overlap, it 
was not possible to investigate the role of this residue by ssNMR. We have included on page 10 a 
corresponding statement: 
 

The histidine residue in the outer transmembrane helix (His25), which was shown to be 
involved in activation gating (Takeuchi et al, 2007; Thompson et al, 2008), could not be 
resolved in ssNMR spectra of KcsA-Kv1.3 (Schneider et al, 2008). 
 

 

I: Ref. 3 indicates a mistake in annotating rate units 
 

We apologize for this mistake, which has been corrected. Finally, we agree with reviewer 2 that 
lipid/detergent aspects would require a more detailed discussion which is outside the scope of our 
work. We hence have decided to remove the sentence in question. 
We modified the text on pages 4-7, 10-13, 15, 18, and 19 so as to enhance the overall clarity of our 
work. 
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 Additional correspondence 08 July 2009 

Many thanks for sending your revised manuscript. It has now been seen again by 
referee 2, who is satisfied with the changes (his/her comments are copied below). I am 
therefore pleased to tell you that your manuscript is now ready to be accepted, and 
you will receive the formal acceptance message shortly. 
 
Referee 2 comments: 
 
The authors did a good job revising the manuscript and I believe their responses and 
revision are appropriate.  
 
 
 
 
 
 
 
 
 
 
 
 


