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ABSTRACT

The aim of this project was to expand a previously de-
veloped prototype expert network for use in the analysis
of multiple biopharmaceutics classification system (BCS)
class II drugs. The model drugs used were carbamazepine,
chlorpropamide, diazepam, ibuprofen, ketoprofen, naproxen,
and piroxicam. Recommended formulations were manufac-
tured and tested for dissolution performance. A comprehen-
sive training data set for the model drugs was developed
and used to retrain the artificial neural network. The training
and the system were validated based on the comparison of
predicted and observed performance of the recommended
formulations. The initial test of the system resulted in high
error values, indicating poor prediction capabilities for drugs
other than piroxicam. A new data set, containing 182 batches,
was used for retraining. Ten percent of the test batches
were used for cross-validation, resulting in models with
R2 ≥ 70%. The comparison of observed performance to the
predicted performance found that the system predicted suc-
cessfully. The hybrid network was generally able to predict
the amount of drug dissolved within 5% for the model drugs.
Through validation, the system was proven to be capable
of designing formulations that met specific drug perform-
ance criteria. By including parameters to address wettability
and the intrinsic dissolution characteristics of the drugs, the
hybrid system was shown to be suitable for analysis of
multiple BCS class II drugs.

KEYWORDS: in silico modeling, capsule formulation,
artificial neural networks, expert systems, low solubility
drugsR

INTRODUCTION

Artificial Intelligence

The use of artificial intelligence, such as artificial neural
networks (ANNs) and expert systems, provides an oppor-

tunity to systematically approach formulation in an efficient
manor. ANNs are computer-based programs that attempt
to simulate some features of the biological brain such as
learning, generalizing, or abstracting from experience.1 ANNs
are parallel information processing systems that can develop
adaptive responses to environmental information.2 ANN
models, such as back propagation learning networks, may
be viewed simply as multiple nonlinear regression models.
The experimental data and information generated may be
transformed relatively easily into knowledge that can be used
in the construction of domain specific rules by the formulator.

There are several advantages to using ANNs. Unlike statistics-
based analysis, these programs do not require experimen-
tally designed data. Incomplete or historical data can be used
successfully to train ANNs. These programs can also model
nonlinear and discontinuous functions. In spite of these
advantages, there are disadvantages to using this type of
modeling. The model generated is very specific and is de-
pendent on experimental conditions. The ability of the pro-
gram to successfully model the relationships hidden in the
data is dependent on the quality of the data used to train the
system. Overtraining of the ANN is also possible, resulting
in “memorized” patterns instead of derived relationships.

An expert system is a computer program that emulates
expert thought to solve significant problems in a particular
domain of expertise. These intelligent computer programs
use knowledge and inference procedures to solve problems.
A unique characteristic of these problems is that they are
often difficult enough to require significant expertise for
their solutions. The knowledge necessary to perform at
such an expert level as well as the inference procedures
used are often thought of as a model of the expertise of the
best practitioners of that given field.3

The use of expert systems (ES) presents several advan-
tages. Well-functioning ES can facilitate an increased
distribution of expertise in a given field and present a
new communication channel for this knowledge. Moreover,
the system provides protection of this knowledge by estab-
lishing a coherent and durable existence that can easily be
accessed, modified, and updated. This knowledge base can
serve as a valuable training aid for novices, allowing ex-
perts involved in training to focus on other issues. ES also
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provide for more consistent approaches to resolution of
problems.3 On the other hand, these systems suffer from
such limitations as lacking creativity in problem resolution.
ES can only deal with issues that have been anticipated and
included in the knowledge base.

Artificial intelligence is not a newcomer in the arena of
pharmaceutical sciences. ANNs have been used to predict
dissolution profiles and for formulation optimization.4-10

Their use has also been employed in predicting model
granulation and tablet characteristics based on material and
process variables11 as well as in estimating the aqueous
solubility of structurally related drugs.12 ANNs have been
used to assess in vitro-in vivo correlations13 and parameters
such as crushing strength and disintegration time have been
optimized.14 In preformulation, ANNs have been used to
characterize the physiochemical properties of amorphous
polymers.15

ES have been used to recognize complex relationships
between formulation variables and in vitro drug release.16

They have also been used in the area of solid dosage de-
velopment, especially in the areas of tableting and film
coating.3 ES have also been applied to troubleshooting
pharmaceutical processing equipment, such as rotary tablet
presses.17 Prototype ES have been developed for the use in
formulary decision making18,19 as well as selecting the
most appropriate pharmaceutical powder mixer.20

Capsugel’s expert system (CES) for formulation support is
a centralized system incorporating worldwide industrial
experience to support formulation of powders in hard
gelatin capsules.21 The most serious limitation is that the
CES provides only a suggested formulation. The system
provides no guidance or assurance that the predicted for-
mulation will meet any particular dissolution, content uni-
formity, and/or weight variation requirement within user
specified limits. It was hypothesized by Guo et al that the
development of a hybrid system linking the current expert
system to an ANN would effectively address this limitation
and provide a facilitated way of generating new rules based
on “learning.” The development of such a hybrid system
that integrated an ANN with an ES could take advantage of
the strengths of both the ANN and the ES while avoiding
the weaknesses of either. By combining both of these
systems, the knowledge of an ES can be used to design a
formulation that could subsequently be optimized by the
ANN. The concept of an expert network (EN) has been
proven viable on a small scale by Guo et al using piro-
xicam as a model drug.19

Biopharmaceutics Classification System

The work of Amidon et al resulted in a scientific method to
identify drugs based on their solubility and permeability.22,23

The biopharmaceutics classification system (BCS), intro-
duced in 1995, consists of 4 drug categories: class I, class II,
class III, and class IV. Class II drugs demonstrate high
permeability but are poorly soluble. These compounds have
the potential for enormous therapeutic success; however,
absorption and, hence, the effectiveness may be limited
by the rate of dissolution of the drug. Owing to solubil-
ity issues, the dissolution behavior of class II compounds
is one of the most critical variables for this category of
substances. In contrast to class I and class III, multipoint
dissolution specifications are recommended for class II
drugs. In addition, a complete characterization of the en-
tire dissolution profile may be necessary to ensure quality
control.24

The widely understood and studied drugs carbamazepine,
chlorpropamide, diazepam, ibuprofen, ketoprofen, nap-
roxen, and piroxicam were used as model drugs in this
project. These drugs were selected because of their low
solubilities and high permeabilities. These drugs were
classified as BCS class II drugs based on their dissolution
rate-limited absorption behavior. Owing to their low sol-
ubility, it was important to characterize the properties of the
drugs that were associated with solubility and wettability.
The intention of this project was to provide a more sys-
tematic approach to capsule formulation of BCS class II
compounds by expanding the prototype EN for use in the
analysis of multiple BCS class II drugs.

MATERIALS AND METHODS

Materials

The following drugs were used as received from the sup-
pliers: carbamazepine United States Pharmacopeia (USP)
(lot RF1355, Spectrum Chemicals, Gardena, CA); chlor-
propamide USP (lot 7812B, ICN Biomedicals, Aurora,
OH); diazepam BP (lot RD0991, Spectrum Chemicals);
ibuprofen USP (lot SE0196, Spectrum Chemicals); keto-
profen USP (lot RC0730, Spectrum Chemicals); naproxen
(lot E2JA099, courtesy of Syntex Pharmaceuticals, Clare-
castle, Ireland); and piroxicam (lot C21P903, courtesy of
Pfizer Inc, Groton, CT).

The following materials were used as received from the
suppliers: anhydrous lactose (lot 60679, Quest International,
Hottman Estates, IL); citric acid (lot RT0330, Spectrum
Chemicals), croscarmellose sodium NF (Ac-Di-Sol, lot
T226N, courtesy of FMC Biopolymer, Newark, DE); cyclo-
hexane (lot 000696, Fisher Scientific, Fair Lawn, NJ); fumed
silica dioxide (Cab-O-Sil M-5P, lot 1J079, Cabot Corp,
Billerica, MA); hydrochloric acid (lot 993660, Fisher Scien-
tific; lot 43169, EMD, Gibbstown, NJ); hard gelatin capsules
(lot 590311, courtesy of Capsugel, Greenwood, SC); micro-
crystalline cellulose (Emcocel 90M, lot E9B0B17, courtesy
of PenWest Pharmaceutical, Patterson, NY); potassium
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citrate (lot QU0707, Spectrum Chemicals); potassium phos-
phate, monobasic (lot RP0462, Spectrum Chemicals; lot
L49147, JT Baker Chemicals, Phillipsburg, NJ); and potas-
sium phosphate, dibasic (lot PX0482, lot SM1234, lot SS0455,
Spectrum Chemicals; lot 7080KAHA, Mallinckrodt, St
Louis, MO); sodium lauryl sulfate (Stepanol, lot 1-354 87,
Stepan Co, Northfield, IL); and sodium stearyl fumarate
(Pruv, lot 305-01X, Mendell, Patterson, NJ).

Aqueous Solubility

Aqueous solubility was determined using the shaker-flask
method. Two grams of neat drug was added to 50 mL of
reagent grade water and was shaken for 24 hours at 25°C ±
1°C. Filtered samples were analyzed spectrophotometri-
cally at the wavelength of maximum absorption for each
drug. Each sample was analyzed in triplicate.

Contact Angle

Augustine Scientific (Newbury, OH) determined contact
angles using the sessile-drop method. One gram of neat
drug was compressed at 500 psig in a lab-scale Carver
press. Ten drops of pure distilled water of volume 1 μL
were placed on each compact surface and analyzed using a
Kruss Drop Shape Analysis System (model DSA10, Kruss
GmbH, Hamburg, Germany). The contact angles reported
are the mean of 10 determinations.

Specific Surface Area

Single-point BET determinations of specific surface area
were conducted by the Materials Analysis Laboratory at
Micromeritics Inc (Norcross, GA) using nitrogen. Most ac-
tives were degassed at 100°C. Ibuprofen (IBU) was degassed
at 60°C and ketoprofen (KET) was degassed at 80°C owing
to their melting points being below 100°C.

Intrinsic Dissolution Rate

A quantity of 250 (± 1) mg of drug was compressed at an
average compression force of 1000 lbs for 3 minutes to
make nondisintegrating compacts using intrinsic dissolu-
tion rate (IDR) dies and a Carver Press (model 4687,
Sterling Inc, Menomonee Falls, WI). The surface area of
the compacts was 0.950 cm2. Compacts were tested in 900
mL of media maintained at a temperature of 37°C ± 1°C in
a VanKel VK7000 (VanKel Industries, Edison, NJ) disso-
lution system fitted for IDR die attachments and were
rotated at 100 rpm. Samples were analyzed with recir-
culation every 2 minutes over a time period of 1 hour and
analyzed using an in-line Shimadzu spectrophotometer
(model UV160U, Shimadzu, Kyoto, Japan) at the max-
imum absorbance wavelength for each active tested. The

flow rate used was one mL/min. Based on the dissolution
profiles obtained, the intrinsic dissolution rate was calcu-
lated using the following equation9:

G¼dw

dt
∗
1

S
ð1Þ

where G is intrinsic dissolution rate (mg/min/cm2); dw is
the change in drug dissolved (mg); dt is the change in time
(minutes); and S is the surface area of the compact (cm2).
The cumulative amount dissolved was plotted vs time for
each vessel. The linear region of this plot (R2 ≥ 0.95) was
determined using linear regression. The slope of the linear
region was taken as dw/dt.

Encapsulation

Hard gelatin capsules were manufactured using a capsule
filling simulator. Fifteen-gram batches were blended for 10
minutes without lubricant. Lubricant was added and the
batches were mixed for an additional 3 minutes. A size 1
tamping piston was used to compress 200 mg of formulated
batch at 100 to 120 N using a laboratory scale Carver Press
(model 4687, Sterling Inc). Compression force was
monitored using a load cell (model 13, Sensotec, Colum-
bus, OH), strain gauge conditioner (model 2160, Measure-
ments Group Inc, Raleigh, NC), and digital oscilloscope
(model 310, Nicolet Instrument Corp, Madison, WI). Twenty-
five capsule plugs were formed and pushed into the empty
capsule bodies (ConiSnap Gelatin Capsules, lot 590311,
Capsugel) and closed by hand.

Dissolution

Dissolution testing was performed using a VanKel VK
7000 dissolution apparatus with a Shimadzu UV spectro-
photometer (model UV-160). UV cells with a path length
of 1 cm were used (model 175, Hellma, Plainview, NY).
Automated sampling with recirculation was performed
every 5 minutes for 45 minutes at a flow rate of 1 mL/min.
A quantity of 900 mL of appropriate medium was main-
tained at 37°C ± 1°C for each capsule tested. The weakly
acidic drugs (naproxen [NAP], KET, chlorpropamide
[CHL]) were tested in 0.1 M pH 6.8 potassium phosphate
(K PO4) buffer using USP apparatus II (paddles) with a
rotation speed of 50 rpm. Capsules were deterred from
floating using capsule sinkers (model 0500-0473, Epoxy
Capsule Weights, Distek, North Brunswick, NJ). The weakly
basic drugs (carbamazepine [CAR], diazepam [DIA]) were
tested in 0.1 N HCl using USP apparatus I (baskets) with
a rotation speed of 100 rpm. The percentage dissolved
values at 10, 30, and 45 minutes reported are the average of
6 determinations.

AAPS PharmSciTech 2005; 6 (3) Article 56 (http://www.aapspharmscitech.org).

E451



RESULTS AND DISCUSSION

Model Drugs

Table 1 includes the results of the determination of aqueous
solubility, contact angle, specific surface area, and aqueous
intrinsic dissolution rate. The contact angles for these drugs
are all in the range of 90° to 100° with the exception of KET
having a value of 68°. Drugs that are conducive to wetting
generally have low contact angles. These values, along with
the low values for aqueous IDR and aqueous solubility sup-
ported the selection of these drugs as models for the low
solubility BCS class II drugs. The marginal values for the
specific surface areas of these drugs, with the exception of
KET, indicated that wetting of these drugs was problematic
due to the limited surface area available for contact with the
solvent.

Expert Network

System design and architecture

A rule-based ES was developed and integrated with an
ANN. Several assumptions were made in the development
of the model ES for simplification purposes: (1) only directly
fillable formulations will be considered (ie, granulation is
outside of the scope of this program); (2) all excipients are
compatible with the active ingredients; (3) a simplified blend

uniformity model can be applied; and (4) diluents can be
simplified to microcrystalline cellulose/lactose (MCC/LAC)
blends (low dose, more LAC; high dose, more MCC). The
ES was used as the decision module and the ANN served as
the prediction module. These components were connected
using 2 information exchange paths to form a loop. These
systems, along with a control module (CM), formed the
3 major components of the hybrid EN. The flowchart de-
tailing the functions and interrelationships of the 3 major
components of the hybrid EN are detailed in Figure 1.

Based on information provided by the user in the input
package, the ES recommended a capsule-based formulation
for the drug of interest. The CM transmitted the recom-
mended formulation to the ANN, where the ANN predicted
the dissolution performance of the recommended formu-
lation. The ANN then returned the predicted dissolution
performance to the CM. The user was then allowed to
compare the predicted results with the target dissolution
properties for the formulation. If the dissolution perform-
ance was not acceptable, the CM provided guidance to
improve the dissolution and sent the new information to the
ES for reformulation. The CM guided the optimization
process until a satisfactory formulation was achieved or the
optimization cycle was terminated by the user.

ANN

The ANN used in the prediction module was a back
propagation learning system that computed output based on

Table 1. Physiochemical Properties of the Model BCS II Drugs*

Contact Angle
(o)†

Specific Surface Area
(m2/g)

Aqueous Solubility
(mg/mL)†

Intrinsic Dissolution Rate
(mg/min/cm2)†

CAR 93.3° (0.2) 0.5924 0.039 (0.001) 0.054 (0.004)
CHL 106.7° (0.3) 0.7107 0.049 (0.001) 0.038 (0.008)
DIA 101.5° (0.3) 0.1397 0.015 (0) 0.002 (0.001)‡

IBU 98.8° (0.3) 0.1892 0.035 (0) 0.015 (0.002)§

KET 67.5° (0.2) 2.3045 0.036 (0.001) 0.035 (0.003)
NAP 105.7° (0.4) 0.3486 0.006 (0) 0.008 (0.001)‡

PIR 90.4° (0.3) 0.7264 0.010 (0.001) 0.003 (0.0003)‡

*CAR indicates carbamazepine; CHL, chlorpropamide; DIA, diazepam; IBU, ibuprofen; KET, ketoprofen; NAP, naproxen; and PIR, piroxicam.
†Reagent grade water
‡Run time = 6 hours
§Run time = 3 hours

Figure 1. Overview of the Prototype Expert Network

Table 2. ANN Architecture Parameters

Input layer 7
Output layer 3
Hidden layer 12
Activation function Sigmoid
Slope 0.1
Learning rate 0.02
Error limit 0.00001
Maximum number of iterations 30 000
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the forward pattern established by the training. The training
of the back propagation network involved 3 stages: the feed
forward of the input training pattern, the calculation of the
output and back propagation of the associated error, and the
adjustment of the weights associated with the variables.
After training, the ANN computed the outputs using the feed
forward method. By increasing or decreasing the weight
associated with a given variable, the effect of that variable
on the model developed was altered to reduce the error
between the calculated values and the actual data. Variables
found to be insignificant in the model were weighted less.
Variables that contributed significantly to the model were
weighted more.

The optimization of several ANN training parameters was
the key to the success of the program. These parameters

included the number of hidden layers, number of hidden
nodes, type of training function, training time, training rate,
and training slope. Different combinations of these param-
eters were evaluated to determine the optimum values for
training to provide minimal system error for the predic-
tions. For this study, the maximum system error allowed
was 0.00002. The optimized ANN parameters used are
listed in Table 2. A sigmoid function with a learning rate
of 0.02 and maximum iterations of 30 000 was used for
training. Sufficient training time along with a complimen-
tary training rate ensured that the program would develop
models for the data that it was presented. Seven input
nodes were used to model the 7 input variables (% LAC,
% disintegrant, % lubricant, % wetting agent, specific sur-
face area (SSA), contact angle, and IDR). Three output
nodes represented the 3 output variables, Q10, Q30, and Q45.

Table 3. Initial Test of Expert Network*

CAR CHL DIA KET NAP

Diluent F-InSol F-InSol F-InSol F-InSol F-InSol
% Diluent 72 67 82 82 69
% Glidant 1 1 1 1 1
% Disintegrant 0.5 0.5 0.5 0.5 0.5
% Lubricant 8 8 8 4 8
% Wetting agent 0.1 0.1 0.1 0.1 0.1
Q10 20.3 67.3 86.8 94.8 85.1
Q10 Predicted 52.3 52.2 53.1 48.4 52.7
Q10 Error -32 15.1 33.7 46.4 32.4
Q30 40.3 98.9 98.3 97.5 98.2
Q30 Predicted 68.6 68.8 67.8 70.8 68.1
Q30 Error -32 15.1 33.7 46.4 32.4
Q45 50.6 98.8 97.8 98 99.2
Q45 Predicted 73.4 73.8 71.9 78.8 72.6
Q45 Error -32 15.1 33.7 46.4 32.4

*CAR indicates carbamazepine; CHL, chlorpropamide; DIA, diazepam; IBU, ibuprofen; KET, ketoprofen; NAP, naproxen; and F-InSol, blend of 75%
anhydrous lactose and 25% microcrystalline cellulose.

Table 4. Box-Behnken Experimental Design*

Batch %LAC %ADS %SSF %SLS Batch %LAC %ADS %SSF %SLS

1 55 12 0.85 1 15 10 12 0.85 0.55
2 55 8 0.85 0.55 16 10 8 0.2 0.55
3 55 4 1.5 0.55 17 10 4 0.85 0.55
4 55 4 0.2 0.55 18 100 8 0.85 0.1
5 10 8 1.5 0.55 19 55 12 1.5 0.55
6 100 4 0.85 0.55 20 55 4 0.85 1
7 100 8 0.2 0.55 21 55 8 0.2 1
8 55 8 0.85 0.55 22 100 8 1.5 0.55
9 55 12 0.85 0.1 23 55 8 0.2 0.1
10 10 8 0.85 0.1 24 55 8 1.5 0.1
11 55 8 0.85 0.55 25 100 8 0.85 1
12 55 4 0.85 0.1 26 55 12 0.2 0.55
13 100 12 0.85 0.55 27 100 8 0.85 1
14 55 8 1.5 1

*%LAC indicates percentage of lactose in the MCC/LAC blend; %ADS indicates the percentage of disintegrant (Ac-Di-Sol); %SSF indicates the
percentage of lubricant (sodium stearyl fumarate); and %SLS indicates the percentage of wetting agent (sodium lauryl sulfate).
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Twelve hidden nodes were used. The number of hidden
layers and nodes per layer were dependent on factors such as
the number of input and response variables as well as the
number of samples and the required prediction accuracy.

Data Analysis

Initial test of hybrid system

The capacity of the initial hybrid system to accurately
predict the dissolution performance of model BCS class
drugs other than PIR was tested before any modifications to
the systemwere made. Input data for CAR, CHL, DIA, KET,
and NAP were processed by the ES, and recommended
formulations for each drug were manufactured. Dissolution
testing was performed on these formulations to determine

the experimental Q10, Q30, and Q45 values. These values
were then compared with the predicted values generated by
the hybrid system. The results of these tests are listed in
Table 3.

The system recommended a filler system of 75% LAC and
25% MCC (F-InSol). The recommended formulations for
each model drug are listed in Table 3. The differences in
the values for predicted vs actual are included in the table
as the error values. As evidenced by the high error values,
the initial system was not very successful in predicting the
dissolution performance of drugs other than PIR. Based on
these results, retraining of the ANN was conducted using a
new training data set.

ANN training

In order to form the causal associations between the for-
mulation parameters and dissolution performance, the ANN
was trained using experimental data. To ensure sufficient
prediction power, it was extremely important to include
sufficient experimental data from well-designed experi-
ments. For this research, a Box-Behnken experimental
design (Table 4) was used to develop a data set for the
variables drug, excipient levels, and dissolution perform-
ance in the most efficient manner. The quality of the
training data and the number of batches used dramati-
cally affected the prediction power of the ANN. The var-
iables and levels used in the training set data are listed in
Table 5. In total, 182 batches were included in the training
set data.

Table 5. ANN Training Data Set Variables

182 Experimental Batches

3 Responses
Q10
Q30
Q45

7 Independent Variables
% Lactose in MCC/LAC blend (10%, 55%, 100%)
% Disintegrant (4%, 8%, 12%)
% Lubricant (0.2%, 0.85%, 1.5%)
% Wetting agent (0.1%, 0.55%, 1%)
Specific surface area (m2/g)
Contact angle (o)
Intrinsic dissolution rate (mg/min/cm2)

Table 6. ANN Training Model Statistics

Q10

Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f ratio
Model 100938.846 109 926.044461 51.365618
Error 973.538386 54 18.028489
Total 100857.607 163
Train set R2 99.03474
Test set R2 69.053528
Q30
Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f ratio
Model 66676.8402 109 611.714131 72.094966
Error 458.181267 54 8.484838
Total 66788.0279 163
Train set R2 99.313977
Test set R2 70.236563
Q45
Source of Variation Sum of Squares Degrees of Freedom Mean Squares Computed f ratio
Model 53297.3053 109 488.966103 139.130902
Error 189.779332 54 3.514432
Total 53231.717 163
Train set R2 99.643484
Test set R2 88.278314
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ANN validation

Validation of the ES was conducted to assess predictability
and functionality. Ten percent of all available batches were
randomly selected to serve as batches for validation and
were not included in the training. The program was trained
under optimal conditions and then used to predict the
dissolution performance of the validation batches. The
predicted dissolution was then compared with the exper-
imentally determined dissolution data for these batches.
Model statistics were determined during the training and
are listed in Table 6. The target R2 value was ≥70%. The
system was extremely accurate in modeling the training set
data, resulting in R2 values 9 99%. The system was suc-
cessful in modeling the test data with increasing predictive
capabilities as the amount of drug dissolved increased.
Based on the training parameters chosen, the system error
and R2 value indicate that the model determined by the
ANN was very predictive of the dissolution behavior of the
model drugs.

The results for the validation batches are shown in Table 7.
The predicted percentage drug dissolved was compared
with the actual dissolution values and the error calculated.
Considering the normal variability of real dissolution data,
percentage error values ≤ ±10% for the comparison data
were acceptable. Based on the data included in Table 6, it
was determined that the ANN had a reasonable capability
of modeling the relationship among the formulation param-
eters and dissolution performance.

The other facet of validation was assessing the ability of the
EN to recommend a formulation based on sound design
criteria and predict the dissolution performance accurately.
The system should be able to perform these functions for
drugs not included in the training as well. To determine the
competence of the system in terms of these criteria, re-
commended formulations were manufactured and tested
for the model drugs included in the training set. This infor-
mation was used to investigate the accuracy of the system

Table 7. ANN Validation Results

%
Lac

%
Disint

%
Lub

%
Wetting
Agent

SSA
(m2/
g)

Contact
Angle
(o)

IDR
(mg/
min/
cm2)

Q10
Q10
Pred

Q10
Err

Q30
Q30
Pred

Q30
Err

Q45
Q45
Pred

Q45
Err

Pattern
Error

B13 10 12 0.85 0.55 0.592 93.3 0.057 15.9 12.3 3.6 38.8 26.6 12.2 47.8 47.1 0.7 80.5
B22 55 8 1.5 0.1 0.592 93.3 0.057 21.0 9.8 11.2 39.3 51.9 −12.6 46.1 54.4 −8.3 177.1
B44 55 8 1.5 0.1 0.711 106.7 1.154 97.2 91.2 6.0 98.2 98.3 −0.1 98.4 99.4 −1.1 18.5
B48 55 8 0.85 0.55 0.140 101.5 1.265 75.9 73.5 2.4 94.1 95.1 −1.0 98.0 97.8 0.2 3.4
B52 100 8 0.2 0.55 0.140 101.5 1.265 83.5 45.4 38.1 97.8 98.2 −0.5 96.7 97.7 −1.1 728.3
B57 100 12 0.85 0.55 0.140 101.5 1.265 83.7 80.6 3.0 99.0 98.0 1.0 97.9 96.9 1.0 5.6
B65 100 8 1.5 0.55 0.140 101.5 1.265 80.1 81.1 −1.0 96.7 98.2 −1.5 96.1 92.9 3.2 6.7
B78 10 8 0.85 0.1 2.304 67.5 1.511 96.8 101.8 −5.0 98.2 100.0 −1.8 98.4 92.2 6.2 33.2
B90 55 8 1.5 0.1 2.304 67.5 1.511 92.3 86.3 5.9 97.6 91.0 6.6 98.4 98.7 −0.3 39.3
B104 100 12 0.85 0.55 0.348 105.7 0.434 86.2 90.5 −4.3 98.0 97.5 0.5 99.5 100.0 −0.5 9.6
B128 100 5 1.5 1 0.161 90.4 0.033 76.2 83.9 −7.7 86.5 91.3 −4.8 88.9 88.5 0.5 41.7
B144 50 5 1 0.5 0.246 90.4 0.033 67.1 66.7 0.4 80.7 82.2 −1.5 85.2 86.9 −1.7 2.7
B156 0 4 0.9 0.6 0.277 90.4 0.033 63.7 66.7 −3.1 92.0 78.9 13.1 97.7 86.6 11.1 151.8
B165 100 8 0.9 0.6 0.277 90.4 0.033 81.7 90.9 −9.2 98.8 91.9 6.8 100.0 96.7 3.3 71.1
B167 0 4 0.6 1 0.277 90.4 0.033 64.1 61.0 3.1 84.2 81.3 2.9 89.9 78.8 11.1 70.6
B174 0 6 0.8 0.3 0.277 90.4 0.033 69.9 45.7 24.2 92.1 79.5 12.7 97.0 88.4 8.6 410.4
B176 0 6 0.2 1.1 0.277 90.4 0.033 70.9 72.2 −1.3 89.1 69.6 19.6 94.6 87.5 7.1 217.5
B179 0 9 0.2 0.7 0.277 90.4 0.033 75.7 85.4 −9.8 93.1 68.0 25.2 97.9 91.1 6.8 387.8

*Lac indicates the percentage of lactose in the MCC/LAC blend; [% Disint] indicates the percentage of disintegrant (Ac-Di-Sol); [% Lub] indicates
the percentage of lubricant (sodium stearyl fumate); SSA - specific surface area; IDR - intrinsic dissolution rate; Pred - Predicted; and Err - Error.

Table 8. Expert Network Validation Results*

Q10
Pred

Q10 Q10%error
Q30
Pred

Q30 Q30%error
Q45
Pred

Q45 Q45%error

CAR 21.2 20.3 -4.2 40.8 40.3 -1.2 48.3 50.6 4.8
CHL 94.8 67.3 -29.0 99 98.9 -0.1 99.5 98.8 -0.7
DIA 80.3 86.8 8.1 95.8 98.3 2.6 97.3 97.8 0.5
IBU 77.2 87.4 13.2 93.3 97.5 4.5 96.3 97.8 1.6
KET 91 94.8 4.2 97.2 97.5 0.3 97.9 98 0.1
NAP 87.3 85.1 -2.5 97.6 98.2 0.6 99 99.2 0.2
PIR 20.1 92.1 358.2 40.8 96.8 137.3 47.5 97.4 105.1

**CAR indicates carbamazepine; CHL, chlorpropamide; DIA, diazepam; IBU, ibuprofen; KET, ketoprofen; NAP, naproxen; and PIR, piroxicam.
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predictions. Input data for IBU, a drug not included in the
training, was processed by the EN, and a recommended
formulation was also manufactured and tested to deter-
mine if the system was capable of adequately formulating
and predicting performance of drugs not included in the
training.

The results of the external validation are shown in Table 8.
The moderate success of the system can be attributed to the
increased error in prediction at Q10 for CHL, IBU, and
PIR. The result of 13.2% for IBU may not be considered
extremely significant since the acceptance criteria is 10%.
CHL and PIR showed significant deviations from the
10% acceptance criteria. The system was able to predict
the behavior at Q30 and Q45 with much greater success
(%error ≤ 10%) for all drugs with the exception of PIR.
One factor that may have contributed to this lack of pre-
dictability for PIR was the fact that the experimental
values for the input data for PIR were close to the values
used for CAR. The system may have treated both drugs
as one and made its predictions based on the patterns
learned for CAR instead of PIR. The addition of another
variable in the training set to further distinguish between
drugs would overcome this issue. The results were some-
what promising in that the system was able to predict the
performance of IBU with some success. It was also en-
couraging that the prototype EN was expanded to include
several other BCS class II drugs along with the initial
drug, PIR.

CONCLUSION

From this research, the EN was expanded to include sev-
eral other BCS class II drugs. Through validation, the
EN was proven to be capable of recommending for-
mulations for the model drugs that met specific drug per-
formance criteria. By including parameters to address
wettability and the intrinsic dissolution characteristics of
the drugs, the EN was expanded to include multiple BCS
class II drugs.
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