Dynamic Measurements of Aqueous Lanthanide Triflate-Catalyzed Reactions Using Luminescence Decay

Prabani Dissanayake and Matthew J. Allen*

Contribution from the Department of Chemistry, Wayne State University, Detroit, MI 48202

E-mail: mallen@chem.wayne.edu

Page	Contents
S 1	Table of Contents
S2–S5	Experimental Procedures
S5	References
S6	Sample Luminescence Decay Curves
S7–S10	Tables of <i>q</i> Values
S11–S14	¹ H and ¹³ C NMR Spectra
S15	LC–MS Chromatogram of Complex 3

Supporting Information

Experimental Procedures

Commercial chemicals were of reagent-grade purity or better and were used without further purification. Water was purified using a PURELAB Ultra Mk2 water purification system (ELGA).

Flash chromatography was performed using silica gel 60, 230–400 mesh (EMD Chemicals).¹ Analytical thin-layer chromatography (TLC) was carried out on ASTM TLC plates precoated with silica gel 60 F_{254} (250 µm layer thickness). TLC visualization was accomplished using a UV lamp followed by charring with potassium permanganate stain (3 g KMnO₄, 20 g K₂CO₃, 5 mL 5% w/v aqueous NaOH, 300 mL H₂O).

¹H NMR spectra were obtained using a Varian Unity 300 (300 MHz) or a Varian Mercury 400 (400 MHz) spectrometer, and ¹³C NMR spectra were obtained using a Varian Mercury 400 (100 MHz) or a Varian Mercury 500 (125 MHz) spectrometer. Chemical shifts are reported relative to residual solvent signals unless otherwise noted (CDCl₃: ¹H: δ 7.27, ¹³C: δ 77.23; D₂O: ¹H: δ 4.79, ¹³C: δ 39.51 for an internal standard of dimethyl sulfoxide-*d*₆). ¹H NMR data are assumed to be first order with apparent singlets and multiplets reported as "s" and "m". Italicized elements are those that are responsible for the shifts. High-resolution electrospray ionization mass spectra (HRESIMS) were obtained on an electrospray time of flight high-resolution Waters Micromass LCT Premier XE mass spectrometer. Liquid chromatography and mass spectrometry (LC–MS) analysis was performed on a Shimadzu LC–MS system equipped with a C18 column (Restek International, Viva C18, 5 µm, 250 × 4.6 mm) equilibrated with 0.4% v/v formic acid, using a binary gradient method (pump A: water; pump B: acetonitrile; 5–95% B over 70 min; flow rate: 1 mL/min).

2-(Hydroxyphenylmethyl)cyclohexanone was synthesized following a previously described procedure.²

S2

Supporting Information

tert-Butyl 2,2',2''-(10-(2-hydroxyethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (1):

To a mixture of anhydrous acetonitrile (10 mL) and anhydrous K₂CO₃ (247 mg, 1.79 mmol, 5 equiv) under an atmosphere of N₂ was added *tert*-butyl 2,2',2"-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (184 mg, 0.358 mmol, 1 equiv) followed by 2-bromoethanol (127 µL, 1.79 mmol, 5 equiv). The resulting mixture was stirred at 70 °C for 12 h. After cooling to ambient temperature and removing excess K₂CO₃ by filtration, the solvent was removed under reduced pressure. Purification was performed using silica gel chromatography (10:1 dichloromethane/methanol) to yield 198 mg (99%) of **1** as a light yellow oil. ¹H NMR (400 MHz, CDCl₃, δ): 1.45 (s, CH₃, 27H), 2.54–2.57 (m, CH₂, 4H), 2.72–2.77 (m, CH₂, 12H), 2.79–2.82 (m, CH₂, 4H), 3.32 (s, CH₂C=O, 6H); ¹³C NMR (100 MHz, CDCl₃, δ): 28.8 (CH₃), 48.1 (CH₂), 51.3 (CH₂), 52.8 (CH₂), 57.8 (CH₂), 81.4 (C(CH₃)₃), 171.9 (C=O); TLC: *R*_f = 0.25 and 0.27 (18:1 dichloromethane/methanol); HRESIMS (*m*/*z*): [M + H]⁺ calcd for C₂₈H₅₅N₄O₇, 559.4071; found, 559.4063.

2,2',2''-(10-(2-Hydroxyethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (2): A

solution of **1** (180 mg, 0.322 mmol) in concentrated HCl (15 mL) was stirred at ambient temperature for 2 h. The reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in H₂O (3 mL) and freeze dried to afford 124 mg (99%) of **2** as a white solid. ¹H NMR (300 MHz, D₂O, δ): 3.13 (m, CH₂, 8H), 3.49 (m, CH₂, 10H), 3.63–3.65 (m, CH₂, 4H), 3.98–4.01 (m, CH₂, 4H); ¹³C NMR (125 MHz, D₂O, δ): 49.5 (CH₂), 49.8 (CH₂), 52.1 (CH₂), 53.4 (CH₂), 54.5 (CH₂), 56.4 (CH₂), 56.5 (CH₂), 56.9 (CH₂), 60.9 (CH₂), 61.1 (CH₂), 64.1 (CH₂), 67.6 (CH₂), 68.1 (CH₂), 170.4 (C=O); 174.3 (C=O); 175.8 (C=O); HRESIMS (*m*/*z*): [M – H]⁻ calcd for C₁₆H₂₉N₄O₇, 389.2036; found, 389.2042.

Dissanayake and Allen

Supporting Information

2,2',2''-(10-(2-Hydroxyethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetoeuropium(III) (3): To a solution of 2 (18 mg, 47 μ mol, 1 equiv) in H₂O (3 mL) was added EuCl₃ hexahydrate (35 mg, 96 μ mol, 2 equiv), and the resulting reaction mixture was stirred at ambient temperature for 24 h while maintaining the pH between 6.9 and 7.1 by the addition of 0.1 M aqueous NH₄OH. The pH of the mixture was increased to 12 to precipitate excess Eu³⁺ as Eu(OH)₃. After removing Eu(OH)₃ by filtration through a 0.2 μ m filter (Millipore, IC Millex-LG), the remaining filtrate was freeze dried. The resulting white solid was dissolved in H₂O (2 mL) and dialyzed against H₂O (cellulose ester, 100–500 Dalton molecular weight cut off, Spectra/Por Biotech). The entire dialysate volume was changed after 3, 7, and 17 h. After dialysis, the solution inside the membrane was freeze dried to yield 21 mg (85%) of **3** as a white solid. The purity of the product was confirmed by LC–MS characterization (page S15). HRESIMS (*m*/*z*): [M + H]⁺ calcd for C₁₆H₂₈N₄O₇¹⁵¹Eu, 539.1173; found 539.1183.

Determination of *q* **Values**

Luminescence decay measurements were acquired using a HORIBA Jobin Yvon Fluoromax-4 spectrofluorometer in decay by delay scan mode using the phosphorescence life time setting. For luminescence decay measurements of control complex, **3**, an excitation wavelength of 395 nm and an emission wavelength of 594 nm were used. For measurements of Eu(OTf)₃, an excitation wavelength of 394 nm and an emission wavelength of 591 nm were used. Other parameters were kept constant: excitation and emission slit width (5 nm), flash count (200), initial delay (0.01 ms), maximum delay (13 ms), and delay increment (0.01 ms). The natural log of the intensity of the scan was plotted against time, and the slope was used as the decay rate. This procedure was performed in H₂O and D₂O versions of each solvent. For each solvent, the decay rates in H₂O (τ_{H_2O}) and D₂O (τ_{D_2O}) were used in the eq 1, which was developed by Horrocks and coworkers,³ to determine the number of water molecules, *q*, coordinated to

the Eu³⁺ ion. For control complex, **3**, eq 2 was used because q is less than or equal to one for this complex.³

eq 1:
$$q = 1.11 \left| \left| \tau_{H_2O}^{-1} - \tau_{D_2O}^{-1} \right| - 0.31 \right)$$

eq 2: $q = 1.2 \left| \left| \tau_{H_2O}^{-1} - \tau_{D_2O}^{-1} \right| - 0.6666 \right|$

Eu(OTf)₃ solutions (1 mM) were prepared for each solvent (1–10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% v/v of H₂O in THF) and used as the first reaction coordinate. The luminescence decay measurements for the second reaction coordinate were acquired using the Eu(OTf)₃ solutions after addition of benzaldyhyde in a 1:9 molar ratio of Eu³⁺ to benzaldyhyde (9 mM benzaldehyde). The third reaction coordinate measurements were acquired after addition of 2-(hydroxyphenylmethyl)cyclo-hexanone to freshly prepared Eu(OTf)₃ solutions in a 1:9 molar ratio of Eu³⁺ to 2-(hydroxyphenylmethyl)cyclohexanone. 2-(Hydroxyphenylmethyl)cyclohexanone was not soluble in H₂O/THF ratios above 70%; thus, for 80–100% H₂O or D₂O in THF, a molar ratio of 1:1 (Eu³⁺ to 2-(hydroxyphenylmethyl)cyclohexanone) was used. The solutions composed of 100% H₂O or D₂O were sonicated for 10 min after the addition of 2-(hydroxyphenylmethyl)cyclohexanone. Control measurements were measured using complex **3** (1 mM) in each solvent studied. Finally, Figures S1 and S2 show representative decay curves, and Tables S1–S4 show results of the luminescence decay data for the control complex, **3**, and for the first, second, and third reaction coordinates of the catalytic cycle. Data reported in the tables is the result of single measurements for complex **3** and three to six replicates for each reaction coordinate.

References

- (1) Still, C. W.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925.
- (2) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590-3596.
- (3) Supkowski, R. M.; Horrocks, W. D. Inorg. Chim. Acta. 2002, 340, 44-48.

Sample Luminescence Decay Curves

Figure S1. Luminescence decay curve of complex **3** in D₂O. The inset shows the natural log plot of the data, and the slope acquired from the natural log plot is the luminescence decay rate $\tau_{D,O}$.

Figure S2. Luminescence decay curve of complex **3** in H₂O. The inset shows the natural log plot of the data, and the slope acquired from the natural log plot is the luminescence decay rate τ_{H_2O} .

% of solvent composed of H ₂ O	q
1	0.99
2	1.07
3	1.02
4	1.03
5	1.05
6	1.08
7	1.03
8	1.09
9	1.05
10	1.02
20	1.05
30	1.09
40	1.07
50	1.07
60	1.06
70	1.09
80	1.08
90	1.06
100	1.04

Table S1. Number of H₂O molecules, q, coordinated to Eu³⁺ for the control complex, **3**.

% of solvent composed of H ₂ O	q (mean)	standard error
1	5.08	0.03
2	5.45	0.03
3	7.29	0.04
4	7.27	0.03
5	7.20	0.03
6	7.39	0.03
7	7.38	0.04
8	7.35	0.04
9	7.35	0.02
10	7.55	0.03
20	7.85	0.03
30	7.82	0.03
40	7.79	0.06
50	7.82	0.03
60	7.91	0.03
70	7.95	0.03
80	7.92	0.05
90	8.04	0.03
100	8.28	0.03

Table S2. Number of H₂O molecules, q, coordinated to Eu³⁺ in the first reaction coordinate of the catalytic cycle.

% of solvent composed of H ₂ O	q' (mean)	standard error
1	5.05	0.03
2	5.33	0.02
3	7.17	0.02
4	7.17	0.03
5	7.02	0.03
6	7.27	0.03
7	7.26	0.02
8	7.21	0.03
9	7.21	0.05
10	7.39	0.03
20	7.51	0.03
30	7.64	0.03
40	7.61	0.04
50	7.61	0.06
60	7.70	0.05
70	7.76	0.03
80	7.73	0.03
90	7.91	0.03
100	8.20*	0.03

Table S3. Number of H₂O molecules, q', coordinated to Eu³⁺ in the second reaction coordinate of the catalytic cycle.

* benzaldehyde was not completely dissolved.

% of solvent composed of H ₂ O	q" (mean)	standard error
1	5.08	0.03
2	5.45	0.03
3	7.30	0.05
4	7.26	0.07
5	7.20	0.03
6	7.38	0.03
7	7.36	0.03
8	7.35	0.03
9	7.36	0.03
10	7.55	0.03
20	7.79	0.05
30	7.73	0.06
40	7.76	0.03
50	7.79	0.06
60	7.91	0.06
70	7.91	0.03
80	7.91*	0.03
90	8.01*	0.06
100	8.26**	0.05

Table S4. Number of H₂O molecules, q", coordinated to Eu³⁺ in the third reaction coordinate of the catalytic cycle.

* Eu³⁺:2-(hydroxyphenylmethyl)cyclohexanone ratio was 1:1.

** Eu³⁺:2-(hydroxyphenylmethyl)cyclohexanone ratio was 1:1, and the solution was sonicated.

absorption at 210 nm