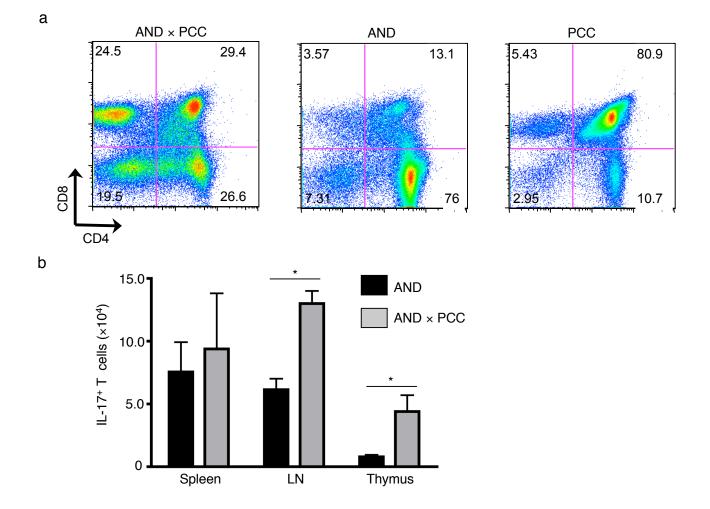
Supplementary Figures and Table

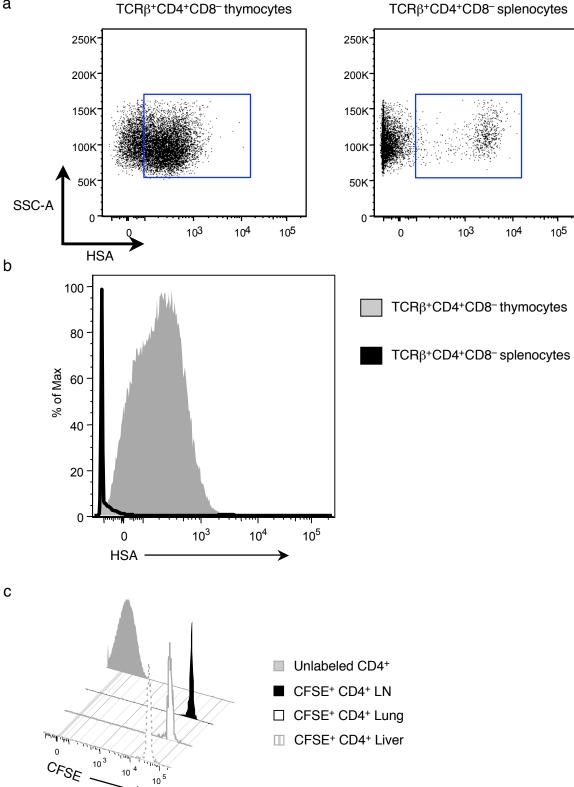
Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation

Benjamin R. Marks¹, Heba N. Nowyhed¹, Jin-Young Choi², Amanda C. Poholek³, Jared M. Odegard¹, Richard A. Flavell^{1,4} and Joe Craft^{1,2}

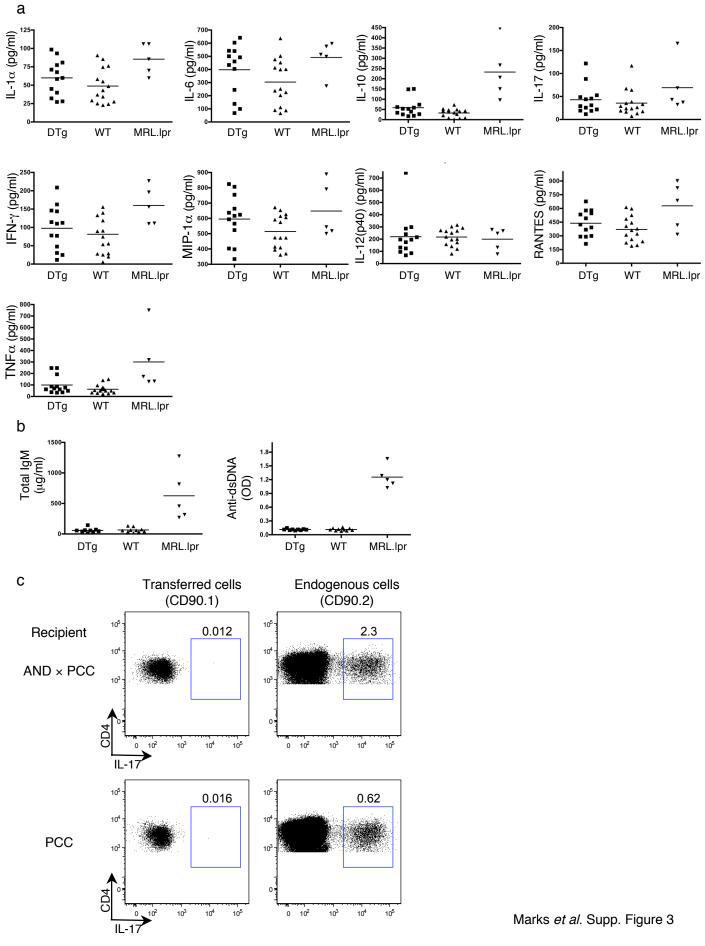

¹Department of Immunobiology, ²Section of Rheumatology, Department of Internal Medicine, ³Department of Cell Biology, ⁴Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA Supplementary Table 1: DTg and STg mice showed comparable survival at age 1 year.

Group	Alive at 1 year
B10.AND×PCC (M)	21/22
B10.AND×PCC (F)	12/12
B10.AND (M)	3/3
B10.AND (F)	3/3
B10.PCC (M)	10/11
B10.PCC (F)	6/6

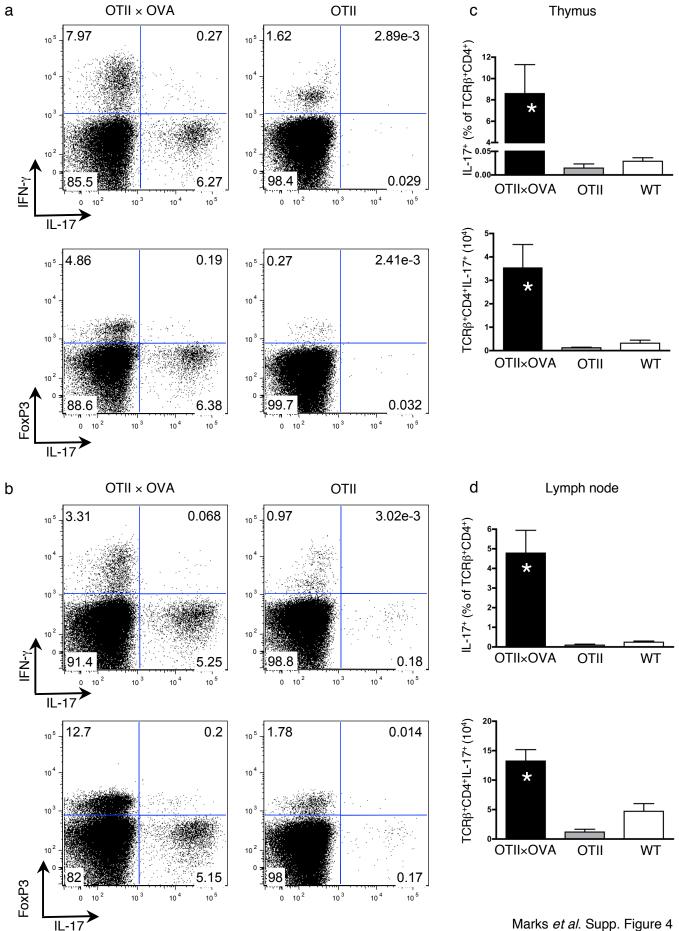
M = male F = female. Right column indicates number of mice surviving to 1 year of age divided by the number of mice in the initial cohort.


Supplementary Table 2: RT-PCR primer sequences

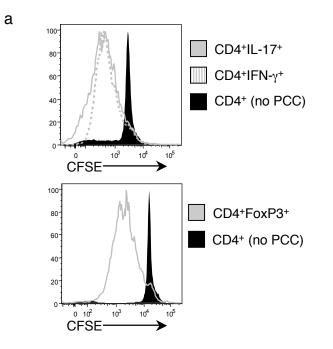
Name	Forward	Reverse
Actb	5'-AGAGGGAAATCGTGCGTGAC-3'	5'-CAATAGTGATGACCTGGCCGT-3'
1117	5'-CTGGAGGATAACACTGTGAGAGT-3'	5'-TGCTGAATGGCGACGGAGTTC-3'
lfng	5'-GATGCATTCATGAGTATTGCCAAGT-3'	5'-GTGGACCACTCGGATGAGCTC-3'
1122	5'-CATGCAGGAGGTGGTACCTT-3'	5'-CAGACGCAAGCATTTCTCAG-3'
ll23r	5'-GCCAAGAAGACCATTCCCGA-3'	5'-TCAGTGCTACAATCTTCTTCAGAGGACA-3'
1110	5'-CCCTTTGCTATGGTGTCCTT-3'	5'-TGGTTTCTCTTCCCAAGACC-3'
Rorc	5'-CCGCTGAGAGGGCTTCAC-3'	5'-TGCAGGAGTAGGCCACATTACA-3'
Rag 1	5'-CATTCTAGCACTCTGGCCGG-3'	5'-TCATCGGGGCAGAACTGAA-3'
Hprt1	5'-CCAGCAAGCTTGCAACCTTAACCA-3 '	5'-GTAATGATCAGTCAACGGGGGGAC-3'


Supplementary Figure 1 Cellularity of the thymus is reduced in DTg mice while the total number of IL-17⁺ T cells is increased. (a) Percentages of CD4⁺CD8⁺, CD4⁺CD8⁻ and CD8⁺CD4⁻ cells of TCR β^+ thymocytes were measured by flow cytometry in DTg, STg AND and STg PCC mice, with data representative of 5 independent experiments. (b) Absolute numbers of TCR β^+ CD4⁺CD8⁻IL-17⁺ cells in the spleen, LN and thymi of DTg and STg mice were determined by counting numbers of cells in each organ and using percentages obtained by FACS staining ($P \le 0.05$; 3 mice per group, 1 experiment).

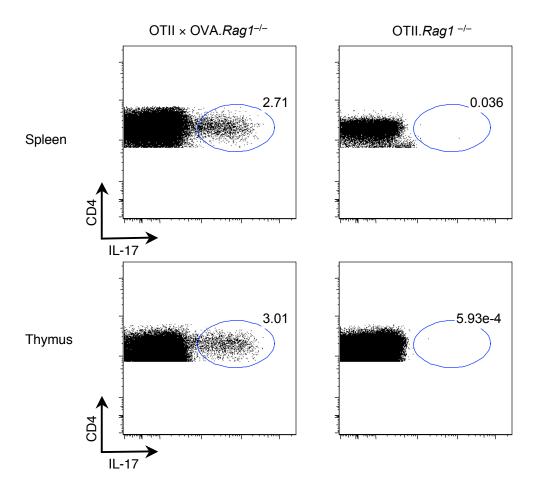
Marks et al. Supp. Figure 1


а

Supplementary Figure 2 HSA (CD24) positive thymocytes were sorted from DTg mice. (a) TCR β +CD4+CD8–thymocytes from DTg mice were sorted based on HSA expression using splenocytes to determine gating. (b) Histogram of HSA expression on TCR β +CD4+CD8– thymocytes (gray) compared to TCR β +CD4+CD8– splenocytes (black). Data are representative of 3 (a,b) independent experiments. (c) Purified CD4+ DTg splenic and LN T cells labeled with CFSE were transferred to wild type recipients; five days following transfer, CFSE dilution of transferred cells in the LN, liver, lungs, and thymi of recipient mice was determined. Data are representative of 2 experiments, with 2-3 mice per experiment.

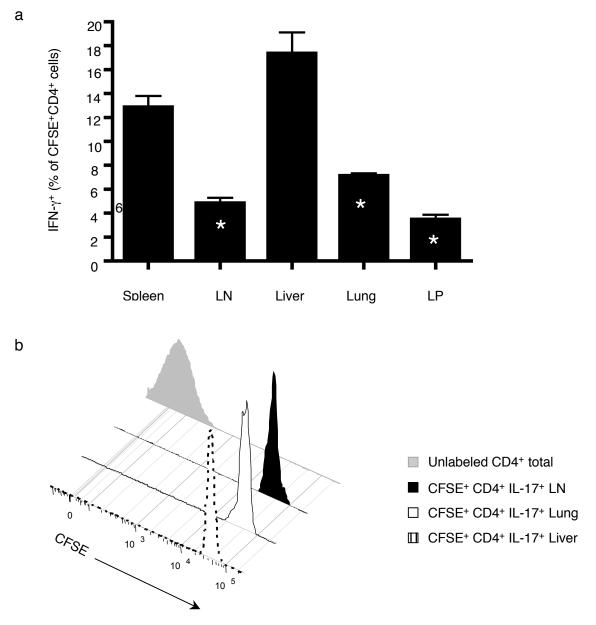

Marks et al. Supp. Figure 3

Supplementary Figure 3 DTg mice do not spontaneously develop autoimmunity and their peripheral environment does not promote T_H-17 cell development. (**a**,**b**) Serum concentrations of inflammatory cytokines and chemokines, including IL-1α, IL-6, IL-10, IL-17, IFN-γ, MIP-1α, IL-12(p40), RANTES and TNFα (**a**), and immunoglobulins, including IgM and anti-dsDNA (**b**) were calculated from DTg, wild-type and lupus-prone MRL/*Fas*^{lpr} mice (13 DTg, 15 wild-type, and 5 MRL mice, with 1 experiment). (**c**) Enriched CD4⁺ T cells from AND.*Rag1*^{-/-}.CD90.1 mice were transferred to DTg and PCC STg CD90.2 mice and 5 days later the percentages of IL-17⁺ cells among CD90.1 (transferred) and CD90.2 (recipient) TCRβ⁺CD4⁺ cells were determined by flow cytometry. Data are representative of 3 mice.

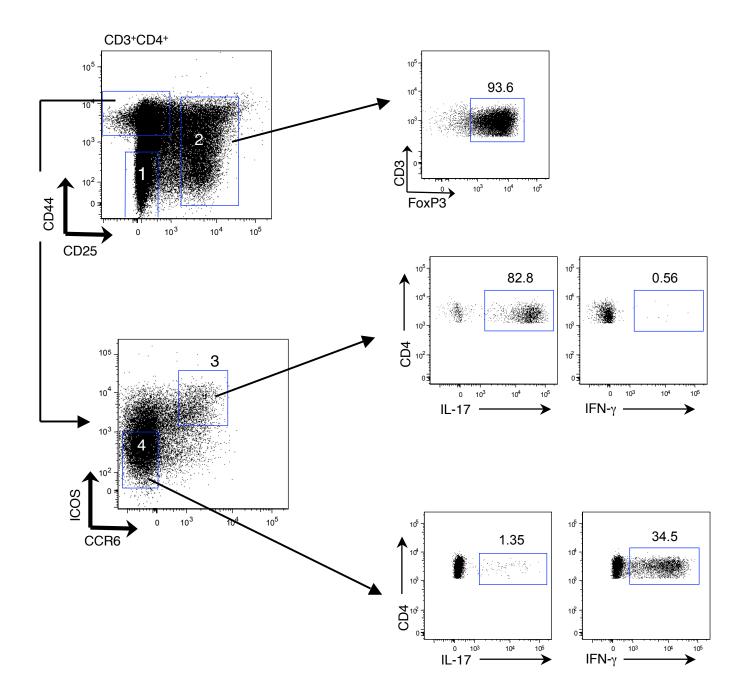


Marks et al. Supp. Figure 4

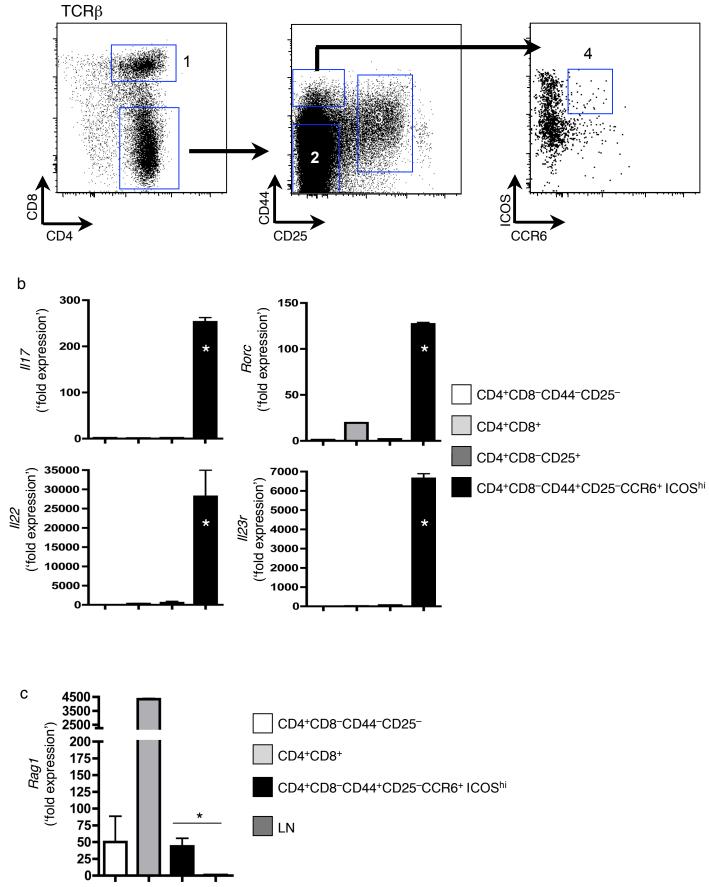
Supplementary Figure 4 Thymi and LN of OTII ×OVA DTg mice are enriched for IL -17+ cells. (a,b) The frequencies of IL-17+, IFN- γ + and FoxP3+ cells among TCR β +CD4+ T cells from the thymus (a) and the LN (b) were assessed by intracellular staining. (c,d) The percentage of IL-17+ among TCR β +CD4+ cells and the absolute number of IL-17+ T cells from thymi (c) and the LN (d) of OTII ×OVA DTg, OTII STg, and wild -type mice are displayed ($P \le 0.05$; 3 mice in each group). Data are representative of 3 (a,b) or 2 (c,d) independent experiments.



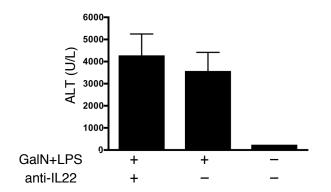
b



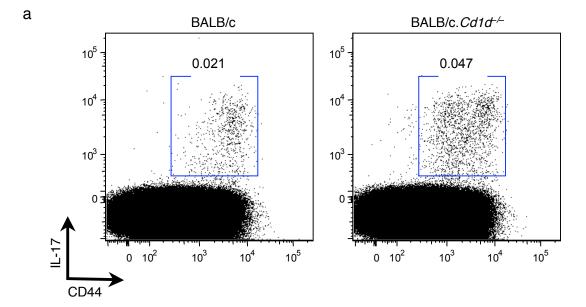
Marks et al. Supp. Figure 5

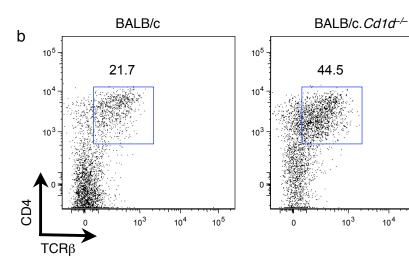

Supplementary Figure 5 T_H-17 cells proliferate in response to PCC and develop in *Rag 1^{-/-}* DTg mice. (**a**,**b**) Splenocytes from AND × PCC mice were enriched for CD4⁺ T cells, labeled with CFSE and cultured for 3 days with 10µg/ml PCC₈₈₋₁₄ peptide and T depleted splenocytes to evaluate proliferation of IL-17⁺ (solid line), IFN- γ^+ (dotted line) or FoxP3⁺ T cells (solid line) compared to unstimulated T cell cultures (solid line). (**b**) Percentages of IL-17⁺ T cells of TCR β^+ CD4⁺ in the spleen and thymus of *Rag1^{-/-}* DTg and STg mice were measured by flow cytometry. Data are representative of 2 (**a**,**b**) independent experiments.

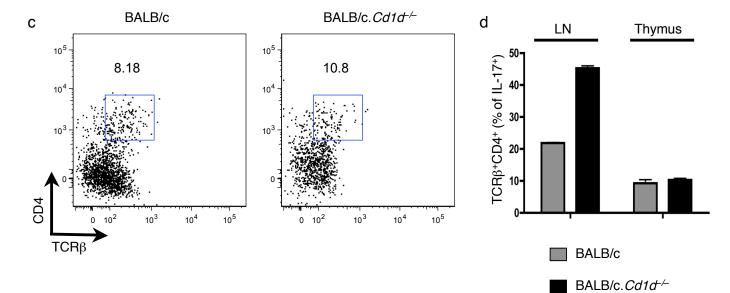
Supplementary Figure 6 Migration pattern of T_H1 cells from DTg mice. (a) Purified splenic and LN CD4⁺ DTg T cells, labeled with CFSE, were transferred to wild-type recipients and percentages of IFN- γ^+ cells among CFSE⁺CD4⁺ cells were measured in the spleen, lymph nodes, liver, lung, and lamina propria at two days post transfer ($P \le 0.05$, compared to spleen; 4 recipient mice examined, representative of 2 independent experiments). (b) Purified splenic and LN CD4⁺ DTg T cells labeled with CFSE were transferred to wild type recipients and CFSE expression in CD4⁺IL-17⁺ cells in peripheral organs were evaluated two days later, with data representative of 3 independent experiments, each using 2-3 recipient mice.



Supplementary Figure 7 T_H-17 cells can be purified from LN and spleens of DTg mice. LN and spleen cells from DTg mice were sorted by gating on CD3⁺CD4⁺ cells, followed by separation into CD44⁻CD25⁻ (naïve), CD25⁺ (T_R), and CD44⁺ gates, with the latter further purified into CCR6⁺ICOS^{hi} (T_H-17) and CCR6⁻ICOS^{lo} (T_H1) populations. FoxP3, IL-17 and IFN- γ were measured by intracellular staining.




а


Supplementary Figure 8 T_H-17 cells from the thymus of DTg mice express RORyt, IL-23R, and IL-22, with RAG expression similar to CD4 SP T cells. (**a**-**c**) Thymocytes from DTg mice were sorted into the indicated subsets, followed by detection of mRNA expression using Q-PCR, with the ratio of gene to *Hprt* expression determined by the relative quantification method ($\Delta\Delta C_T$). mRNA expression in T_H-17 cells compared to DP, naïve and T_{reg} cells (**b**, *P* ≤ 0.05; compared to 3 other groups,) or, for *Rag1* expression, to LN cells (**c**, *P* ≤ 0.05, with data compiled from 3 replicates using 1 cell sort by flow cytometry).

Supplementary Figure 9 IL-22 mediated protection from toxic hepatitis is dependent upon transfer of DTg T cells. Serum aspartate aminotransferase (ALT) was measured in sera taken from mice 5 h post GalN+LPS treatment, with or without 2h pre-treatment with an anti-IL-22 blocking antibody (4 mice per group, 1 experiment).

10⁵

10⁴

Supplementary Figure 10 T_H-17 cells develop in the absence of CD1d. (**a-d**) The frequency of IL-17 producing TCR β^+ CD4⁺ cells of the LN (**a**) or TCR β^+ CD4⁺ cells among the IL-17⁺ cells in the LN (**b**,**d**) or thymus (**c**,**d**) was compared between wild type and CD1d-deficient mice (both on BALB/c background) using intracellular cytokine staining. Data are representative of 4 mice per group (**a-c**), with (**d**) a composite of those 4 animals.