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1 Multiple Spaced Seed Design

Despite much research [1] [2] [3] [4] [5] [6] [7] has been devoted to the optimization of multiple
spaced seeds for different sensitivity criteria, we proposed the following three methods to generate
full sensitive periodic multiple seeds. For large genome re-sequencing application, multiple index
tables can be queried with the MapReduce framework as proposed in [8] to increase the mapping
efficiency and sensitivity by utilizing the higher weight of multiple seeds.

1.1 Design paired periodic seeds with exhaustive search

The design of single periodic seeds can be generalized to find same-length periodic multiple seeds.
Tables 1 and 2 show the increase in weight for different period lengths which results from the using
paired rather than single seeds. Fig 1 displays the local maximum of weight-length ratios for paired
seed periods.

Table 1. The maximum period weight for single and paired seeds at different sensitivity levels

Full Sensitive to 2 substitutions 3 substitutions 4 substitutions

Repeat length 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

Repeat weight 3 4 4 5 6 7 8 9 2 2 3 3 4 5 5 6 1 1 1 2 3 3 3 4

Paired repeat weight 3 4 5 6 7 8 8 10 2 3 3 4 5 6 6 7 1 2 2 3 3 3 4 5

Table 2. The maximum weight for single and paired seeds period at SOliD specific sensitivity levels

Full Sensitive to 1 base + 1 color substitutions 2 base substitutions

Period length 6 7 8 9 10 11 12 13 6 7 8 9 10 11 12 13

Period weight 2 2 3 4 5 5 6 7 1 2 2 3 4 5 5 6

Paired Period weight 2 3 4 5 6 6 7 8 2 3 3 4 5 6 6 7

1.2 IP reduction for finding the weight-maximized paired seeds

We attempted to reduce the problem of maximizing paired spaced seeds to an integer programming
problem to generate solutions using lp solve [9]. For ease of explanation, we give the IP reduction
to maximize the weight W of a single seed given a fixed read length |R| and seed length |Π|.
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Fig. 1. The left figure displays maximum weight-length ratios for paired seed periods of differing length. The right
figure displays the seed weight of periodic paired seeds for different read lengths and sensitivity requirements. We
include dashed lines to indicate the minimum and sufficient seeds weights for genome scale mapping, 14 and 20.

Table 3. Paired Seeds with different full sensitivity threshold on 34 color signals

Seed Patterns, parenthesized Full Sensitivity to Index Queries Original Extended E(Random Hits)

according to the periodic repeat mismatch types Per Base Per Read Weight Weight Per Reads (3B)

(11111∗∗∗)(11111∗∗∗)(11111∗∗∗)(111)
(111∗11∗∗)(111∗11∗∗)(111∗11∗∗)(111) 2 color mis 2 16 18 18 to 22 0.347

(111111∗∗∗∗)(111111∗∗∗∗)(11111)
(1111∗∗11∗∗)(1111∗∗11∗∗)(1111∗) 1 base + 1 color mis 2 20 16, 17 16 to 21 4.249

(111∗11∗1∗∗∗)(111∗11∗1∗∗∗)(11)
(111∗∗∗1∗11∗)(111∗∗∗1∗11∗)(11) 3 color mis 2 22 14 14 to 19 84.03

(111111∗∗∗∗∗)(111111∗∗∗∗∗)(11)
(1111∗∗11∗∗∗)(1111∗∗11∗∗∗)(11) 2 base mis 2 22 14 14 to 19 63.06

(111∗∗∗∗∗∗)(111∗∗∗∗∗∗)(111∗∗∗∗∗)
(11∗1∗∗∗∗∗)(11∗1∗∗∗∗∗)(11∗1∗∗∗∗) 4 color mis 2 18 9 9 to 12 110507

.

Maximize W
Subject to∑|R|

i=1 ui = W
for 1 ≤ i ≤ j ≤ |R| and l = 0, ..., min{|R| − |Π|, i− 1}

ui−l + xijl ≤ 1
uj−l + xijl ≤ 1
xijl ∈ {0, 1}

for 1 ≤ i ≤ j ≤ |R| ∑|R|−|Π|
l=0 xijl ≥ 1

for i = |Π|+ 1, ..., |R| ui = 0
for i = 1, ..., |Π| ui ∈ {0, 1}

ui = 1 if position i on the seed is a ”care position”, otherwise ui = 0.

∀i, j the spaced seeds can shift |R| − |Π| times with l representing a specific
shift, s.t. at least one flag xijl is covered. The weight is equal to the sum of
ui.

Providing further justification for the use of periodic seeds, lp solve returned the same single
spaced seeds, F2 and F3, that we designed. In theory this reduction can be easily generalized to



Supplementary Methods 3

many seeds for a target function which maximizes the lowest the seed weights. Unfortunately, the
IP reduction is too slow in practice to find solutions containing three or more seeds.

1.3 Multiple periodic seed design method: mismatch tuple grouping

In addition to the methods described above we propose a simple algorithm to design full sensitive
multiple seeds by grouping all possible mismatches tuples. Our simple strategy demonstrates a
generalizable seed design scheme, which often provides better results than methods that divide
reads into equal size fragments.

For example, to design multiple seeds full sensitive to three mismatches with period length as
5, all the possible patterns,

(
5
3

)
are list as follows. These patterns are assigned into two groups

corresponding to two seeds. Each pattern in a group can be transformed to the other pattern by
performing shifting the pattern along the length of the read.

1) (11***), (1***1), (***11), (**11*), (*11**)
2) (1*1**), (*1**1), (1**1*), (**1*1), (*1*1*)

For read with length 32, the full sensitive seed pair is

(11***)(11***)(11***)(11***)(11***)11*
(1*1**)(1*1**)(1*1**)(1*1**)(1*1**)1*1

It can also be extended to utilize the full read length as the single seed.

(11***)(11***)(11***)(11***)(11***)(11***)11
(1*1**)(1*1**)(1*1**)(1*1**)(1*1**)(1*1**)1*

Ten queries is needed. Each query has the effective seed weight from 12 to 14. This is a better
choice than the full sensitive multiple seed in C3 family, which also needs ten queries with weight
12, however with four instead of two index tables.

(111111)(111111)
(111111)(∗ ∗ ∗ ∗ ∗∗)(111111)
(111111)(∗ ∗ ∗ ∗ ∗∗)(∗ ∗ ∗ ∗ ∗∗)(111111)
(111111)(∗ ∗ ∗ ∗ ∗∗)(∗ ∗ ∗ ∗ ∗∗)(∗ ∗ ∗ ∗ ∗∗)(111111)

Let M(p, k) denote the multiple seed designed by grouping
(

p
k

)
mismatches tuples, where p is the

period length and k is the mismatches number of full sensitivity threshold. Similarly, let MS1,1

be the special seed family full sensitive to one color and one base used for the SOLiD reads. The
following table compare the M and MS seed families with the single periodic seed family F and C
family which divide reads into fragments.

The expected random hits number per read is, the number in each cell multiplied by the reference
length that the read will be mapped to. This table indicates the practical limits, in terms of number
of tables, queries and expected random hits of using multiple index tables to achieve full sensitivity
to four and five mismatches.

2 Analysis of Periodic Seeds for Weight Optimization

The high seed weight achieved through the use of periodic space seeds agrees with the results
from Kucherov [7], that weight optimization usually involves a periodic seed. We design our seeds
through weight optimization of a repeating pattern, a method that yields high weight, generalizable
and extendable spaced seeds. However, it does not preclude that there exists a non-periodic single
spaced seed of higher weight. Here we show that F2 generalized to a 34bp achieves the maximum
possible seed weight which provides full sensitivity to two mismatches in seven slides.
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Table 4. Comparison of single and multiple seeds generated by the mismatch tuple grouping method

Seed family # Index tables # Queries Expected Random Hits Per Read / Reference Length
|R| = 25 |R| = 30 |R| = 32 |R| = 34 |R| = 36

F2 1 7 1.99e-007 2.63e-009 7.79e-010 3.15e-010 2.48e-011

M(5, 2) 2 10 4.56e-008 7.13e-010 1.40e-010 3.98e-011 3.98e-012

M(6, 2) 3 15 2.04e-008 2.54e-010 3.63e-011 6.43e-012 9.91e-013

M(7, 2) 3 21 1.49e-008 8.00e-011 1.46e-011 3.66e-012 2.48e-013

M(8, 2) 4 28 2.12e-008 1.36e-010 1.97e-011 1.53e-012 2.21e-013

C2 3 6 3.58e-007 2.24e-008 1.40e-009 1.40e-009 8.73e-011

S1,1 1 10 7.95e-006 3.28e-007 3.01e-008 1.15e-008 4.04e-009

MS1,1(6, 3) 3 18 2.01e-006 7.54e-008 2.04e-008 6.68e-009 1.18e-009

MS1,1(7, 3) 4 28 9.78e-007 1.33e-008 3.82e-009 1.27e-009 1.10e-010

MS1,1(8, 3) 5 40 4.61e-007 1.09e-008 1.61e-009 1.60e-010 4.70e-011

MS1,1(9, 3) 6 54 8.36e-007 3.83e-009 8.59e-010 2.04e-010 2.96e-011

F3 1 11 3.08e-005 3.20e-006 1.30e-006 1.05e-007 3.01e-008

M(5, 3) 2 10 1.81e-005 1.13e-006 4.06e-007 1.83e-007 4.28e-008

M(6, 3) 4 20 3.58e-006 1.15e-007 3.02e-008 9.12e-009 1.79e-009

M(7, 3) 5 35 1.36e-006 1.95e-008 5.31e-009 1.60e-009 1.48e-010

M(8, 3) 7 56 7.04e-007 1.53e-008 2.32e-009 2.80e-010 6.59e-011

C3 4 10 9.54e-006 5.96e-007 5.96e-007 5.96e-007 3.73e-008

F4 1 10 1.34e-003 1.41e-004 6.60e-005 3.60e-005 1.72e-005

M(5, 4) 1 5 4.88e-003 1.22e-003 8.54e-004 4.88e-004 2.59e-004

M(6, 4) 3 15 3.78e-004 3.43e-005 1.56e-005 7.51e-006 2.15e-006

M(7, 4) 5 35 7.72e-005 3.02e-006 1.21e-006 4.43e-007 7.66e-008

M(8, 4) 10 70 2.79e-005 1.44e-006 2.58e-007 6.08e-008 1.79e-008

C4 5 15 2.29e-004 1.43e-005 1.43e-005 1.43e-005 8.94e-007

M(6, 5) 1 6 2.05e-002 5.86e-003 4.39e-003 2.93e-003 1.46e-003

M(7, 5) 3 21 2.66e-003 2.95e-004 1.66e-004 8.01e-005 2.65e-005

M(8, 5) 7 56 5.37e-004 6.75e-005 1.50e-005 5.34e-006 2.58e-006

M(9, 5) 14 126 5.21e-004 1.60e-005 5.83e-006 2.03e-006 3.72e-007

C5 6 21 5.13e-003 3.20e-004 3.20e-004 3.20e-004 2.00e-005

Definition 1. Let M2 represent that maximum weight fixed length single seed to provide full sensi-
tivity to two mismatches after seven slides for a 34bp read. M2 is some combination of twenty-eight
”care” (”1”) and ”don’t care” positions (”*”).

For M2 to provide full sensitivity it must cover twenty-eight positions pairwise with ”*” during
the seven slides. Thus, the following inequality must hold.(

28
2

) ≤ (
28−w

2

) ∗ 7
This inequality holds only for values of w below eighteen, meaning M2 cannot have weight greater

than seventeen. However, if we consider that adjacent positions must also be covered pairwise with
(”*”), we can observe the natural inefficiency which results from allowing just seven slides. The
consecutive ”*” positions required every seven positions to cover all adjacent pairs will cover

(
4
2

)
redundant positions each of the six times the seed slides. Subtracting these thirty-six redundant
pairs to the above inequality results in w no greater than sixteen. Thus, M2 can have weight no
greater than sixteen, equal to the weight of F2.

3 Estimation of partial sensitivity

The partial sensitivity is calculated by mapping simulated reads. Ten million reads are simulated
from the human chromosome one with exactly four and five mismatches. 88.1% and 66.8% of
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the reads can be mapped back to chromosome one, within four and five mismatches threshold
respectively using the F3 seed. 91.1% and 69.7% of these simulated reads can be mapped back to
the whole human genome, with the F3 seeds.
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