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Whole Cell Patch Clamp Technique 

The whole cell patch recording method is used to measure currents from small 

cells while maintaining constant voltage (voltage-clamp). In this method inward 

calcium currents are activated by test voltages applied at values between -60 mV 

and +60 mV from a holding potential of -100 mV.  Characteristic time-dependent 

changes in current are exemplified by current traces shown in Fig. 1c.  The 

maximum current vs. test voltage relationship is U-shaped (Fig. 1e).  Inward 

current increases with stronger test depolarization because of the steep 

dependence of channel open probability on voltage. However, the concomitant 

decrease in driving force on calcium ions with depolarization acts to decrease 

current flow through each individual channel. The inward current is eventually 

balanced by an equal and opposite outward current at the channel reversal 

potential of close to +60 mV (Fig 1e ).   

 

Analysis of competitive metal binding to CNT-carboxylate functional 

groups 

The metal adsorption isotherms in Fig. 4e were used to determine equilibrium 

constants for soluble yttrium binding to CNT-carboxylate, both in DI water and in 

saline where Na+ ions compete for the same sites. The relevant reaction and 

binding equilibrium constant are:  

    Y3+ + CNT - COO-   CNT-COOY2+   (S1) 

KY=
]][YCOO-[CNT 

]COOY-[CNT
3-

2





=
])[( 3

max

 YNN

N

Y

Y   (S2)  

where NY is the number of bound sites, Nmax is the total number of surface 

carboxylic sites, and [Y3+] represents here the total concentration of all soluble 

yttrium species at equilibrium.  Relation S2 fits the experimental isotherm of Fig. 

4f well giving Nmax=0.37 mmol/g and KY = 857 l/mmol.  Expressed as a 
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dissociation constant: Kd = 1/KY = 1.2 μM, which is the soluble yttrium 

concentration at which 50% of the available carboxylic sites will be occupied. 

From Figure 2d, yttrium mobilization into the electrophysiology buffer achieves 

higher concentrations than 1.2 uM, indicating that CNT-surface-bound Y3+ is 

likely another source of bioavailable Y (beyond the discrete nanoparticles), and 

may explain why whole SWNT suspension has a slightly stronger calcium ion 

channel inhibitory effect than the supernatant alone (where the CNT-surface-

bound yttrium  is absent). 

 

In physiological solutions yttrium must compete with other ions for carboxylate 

binding sites on nanotubes and in the selectivity filter in the ion channel pore.  

Here simple experiments were conducted in saline solution to probe the 

competitive binding of yttrium and sodium on CNT-carboxylates.  Figure 4e 

shows that total yttrium binding from 80 uM solutions is reduced but still 

significant in the presence of 154 mM Na+, allowing a quantitative analysis of 

competitive binding.  In Y-doped saline two equilibrium expressions must be 

satisfied simultaneously: 

   KY=
]][YCOO-[CNT 

]COOY-[CNT
3-

2





=
])[( 3

max

 YNNN

N

YNa

Y   (S3) 

   KNa=
]][NaCOO-[CNT 

]COOY-[CNT
-

2





=
])[( max

 NaNNN

N

YNa

Na   (S4) 

 

Where KY, Nmax were determined previously (857 l/mmol and 0.37 mmol/g 

respectively). At 154 mM, [Na+] is nearly constant since it is much higher than the 

initial (maximum) yttrium concentration (~0.1 mM). This leaves KNa as the only 

unknown variable. Fitting the data in Fig. 4e yields KNa = 0.11 l/mmol, or a 

sodium dissociation constant Kd of 9060 μM and provides a satisfactory curve 

shape (see Figure 4e bottom line).  Clearly yttrium binding continues in the 

presence of the abundant Na+ ion, but is reduced from the pure water case by 

ion-ion competition.  
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Our reported dissociation constants (Kd = 1.2 μM for yttrium/SWNT-COO-) can be 

compared to the reciprocal binding constants for Y3+ and Y(OH)2+ reported by 

Turkel et al. in experiments on salicilic acid, which range from 0.1 to 1000 M 

depending on the soluble yttrium species[29,34].  The metal speciation diagram 

for yttrium indicates Y3+ and Y(OH)2+ under the neutral pH conditions of the CES 

buffer[35] 
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