Supplemental Figure 1

Legend: C4-2 cells expressing constitutively active $\alpha\nu\beta3$ (CA, D723R) readily bind ligand and signal without the need for stimulation (inside-out signaling). C4-2 cells re-expressing $\beta3$ WT or CA were plated in Vn coated dishes (a) or pretreated with VEGF (10ng/mL) followed by plating in Vn coated dishes (b). Cell lysates from select time points were separated by SDS-PAGE, transferred to nitrocellulose and analyzed by immunoblotting with anti- phospho FAK Y379 (Chemicon) and FAK antibodies (Cell Signaling Technology). a) C4-2 CA $\alpha\nu\beta3$ cells bind Vn and signal through $\alpha\nu\beta3$ resulting in FAK Y379 phosphorylation at high levels as early as 10 minutes. C4-2 $\alpha\nu\beta3$ WT cells required at least 20 minutes for minimal FAK Y379 phosphorylation. b) Incubation of $\alpha\nu\beta3$ WT cells with VEGF prior to plating on Vn provides $\alpha\nu\beta3$ WT cells with an activating stimulus that promotes rapid signal internalization following ligand binding. FAK Y397 phosphorylation is similar for both C4-2 cell lines at all time points tested.

Supplemental	Table 1.	Analysis o	of C4-2 e	xpression	of integrin	ανβ3	expression	and s	tate of
activation									

	β3 (–)	β3 WT	β3 D723R	β3 S752P
MFI	75.1	323.95	314.56	301.99
Activation Index	1.0	2.9	10.2	n.d.

NOTE: Expression levels of $\alpha\nu\beta3$ following retroviral infection for $\beta3$ expression was determined by FACS analysis (FACSCalibur/CellQuest software package; Becton Dickinson, San Jose, CA). Cells were incubated with mouse monoclonal anti- $\alpha\nu\beta3$ (LM609; Chemicon, Temecula, CA) or with control mouse IgG (Invitrogen, Carlsbad, CA) for 1h at 25°C. Cells were washed 2x in PBS then incubated with Alexa-Flour 488 conjugated anti-mouse IgG (Invitrogen) and subjected to FACS analysis. The functional activity of the $\beta3$ integrin was assessed on the basis of fibrinogen binding by suspending cells in RPMI with 0.2% BSA, followed by treatment with or without cRGDfv (50µM) and Fluorescein isothiocyanate (FITC)-labeled fibrinogen at a final concentration of 1µM for 30 min. Cells were washed and the numbers of FITC-Fibrinogen bound cells were determined by FACS analysis. The percentages of activation index of cell types were calculated as follows:

% Activation Index = $\frac{MFI(FITC-Fgn) - MFI(FITC-Fgn + cRGDfv)}{MFI \text{ of }\beta3 \text{ Expression}} X 100$

Resulting values were normalized to the activation index of C4-2 β 3(–) cells, which were assigned a value of 1.

		C4-2 cell line				
Parameter		ανβ3 (-)	ανβ3 WT	ανβ3 CA	αvβ3 inactive	
Adhesion to Vn (cells x1000)	no Mn ²⁺	6 ± 1	7 ± 1	14 ± 1	4 ± 1	
	Mn ²⁺	5 ± 2	14 ± 1	14 ± 1	5 ± 1	
Migration to Vn (cells per field)	Alone	28 ± 3	124 ± 4	179 ± 7	64 ± 5	
	+ anti- $\alpha v\beta 3$	24 ± 3	40 ± 5	33 ± 3	32 ± 2	
	no Mn ²⁺	2 ± 1	22 ± 4	73 ± 6	4 ± 1	
(cells per field)	Mn ²⁺	2 ± 1	46 ± 3	100 ± 9	8 ± 2	
	alone	3 ± 1	33 ± 3	50 ± 3	17 ± 3	
Migration to SPARC (cells per field)	+ anti- $\alpha v\beta 3$	1 ± 0	15 ± 3	11 ± 1	14 ± 2	
% Adhesion to Bone Extract	no Mn ²⁺	5 ± 1	6 ± 2	20 ± 3	4 ± 1	
	Mn^{2+}	8 ± 1	19 ± 0	27 ± 3	6 ± 1	
Migration to Bone Extract (cells per field)		15 ± 1	38±2	64 ± 3	21 ± 2	

Supplemental Table 2. Adhesion and migration of C4-2 cells to bone matrix proteins and extract

Adhesion and migration experiments were performed in triplicate (anti- $\alpha\nu\beta$ 3= 20ug/ml; Mn²⁺=1mM; Vn, BSP, SPARC and bone extracts were a 10ug/ml). Cell counts were determined by counting the number of adherent or migrated cells from 10 fields of each experiment. β 3 (–) cells lack $\alpha\nu\beta$ 3 heterodimer expression; β 3 WT cells express resting, yet activatable $\alpha\nu\beta$ 3; β 3 CA cells express constitutively active $\alpha\nu\beta$ 3; β 3 inactive cells express resting, non-activatable $\alpha\nu\beta$ 3.