Comparing treatments in the presence of crossing survival curves:

an application to bone marrow transplantation

Web Appendix A: Variance of the Weighted Kaplan-Meier Statistic

The weighted Kaplan-Meier test under Hy is equivalent to
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Suppose that ny/n — p, < 1 for k£ = 0,1, and that there exists a non-negative function w
such that @ converges in probability uniformly on [0,%,]. Since Si(t) — Si(t) is asymptot-
ically equivalent to —S(t) fot dMjy(u), where My is a zero mean Gaussian martingale with

independent increments, then W, is asymptotically equivalent to
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Then X has predictable variation process
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The variance of X} can be estimated by
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and under independent samples the variance of Wiy (to) is \//z;"WKM = 2,1{:0 \//EE(X k)-



