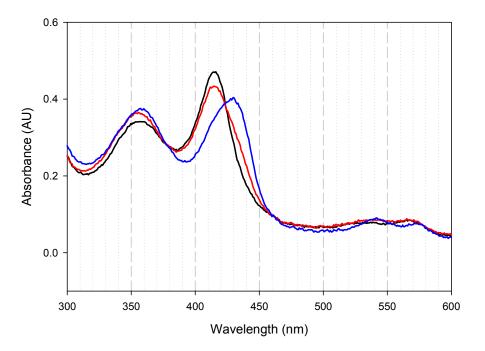
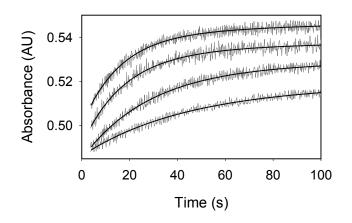
SUPPORTING INFORMATION FOR


Kinetics and Activation Parameters for Oxidations of Styrene by Compounds I from Cytochrome P450_{BM-3} (CYP102A1) Heme Domain and from CYP119

Xinting Yuan, Qin Wang, John H. Horner, Xin Sheng, Martin Newcomb


Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607

CONTENTS

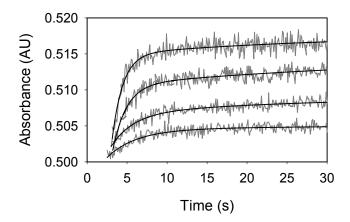

Figure S1. UV-visible spectra of CYP119 species	Page S2
Figure S2. Kinetic traces for CYP119 Compound I	Page S2
Figure S3. Kinetic traces for CYP102 _{HD} Compound I	Page S3
Table S1. Rate constants for reactions of styrene with $CYP102_{HD}$ Compound I	Page S4
Table S2. Rate constants for reactions of styrene with CYP119 Compound I	Page S5
Table S3. Rate constants for reactions of C ₆ H ₅ CD ₂ OH with CYP102 _{HD} Compound I	Page S6

Figure S1. UV-visible spectra of CYP119 resting enzyme (black line), Compound II (blue line), and Compound I (red line).

Figure S2. Representative kinetic traces monitored at 416 nm and fits for reactions of CYP119 Compound I with styrene at -50 °C. The concentrations of styrene were, from the top, 6.5, 5.0, 2.0, and 1.0 mM.

Figure S3. Representative kinetic traces monitored at 416 nm and fits for reactions of CYP102_{HD} Compound I with styrene at -20 °C. The concentrations of styrene were, from the top, 3.0, 2.0, 1.0, and 0.5 mM.

Temp (°C) ^b	[styrene] (mM)	$k_{\rm obs} ({\rm s}^{-1})^{\rm c}$
-35	0	< 0.001
	1.0	0.10 ± 0.02
	2.0	0.14 ± 0.01
	4.0	0.16 ± 0.02
-30	0	0.0015 ± 0.0002
	0.5	0.13 ± 0.03
	1.0	0.18 ± 0.02
	2.0	0.25 ± 0.03
	4.0	0.30 ± 0.02
-20	0	0.0056 ± 0.0003
	0.5	0.28 ± 0.05
	1.0	0.36 ± 0.05
	2.0	0.59 ± 0.04
	3.0	0.74 ± 0.06
-10	0	0.025 ± 0.009
	0.25	0.21 ± 0.02
	0.5	0.43 ± 0.03
	1.0	0.73 ± 0.05

Table S1. Observed rate constants for reactions of styrene with CYP102_{HD} Compound I.

^aIn 1:1 solutions of glycerol and 100 mM potassium phosphate buffer (pH 7.4). ^b \pm 0.2 °C.

^cErrors are 1σ .

Temp (°C) ^b	[styrene] (mM)	$k_{\rm obs} ({\rm s}^{-1})^{\rm c}$
-50	0	0.0031 ± 0.0006
	1.0	0.024 ± 0.008
	2.0	0.035 ± 0.009
	3.0	0.046 ± 0.008
	5.0	0.058 ± 0.010
	6.0	0.063 ± 0.007
	6.5	0.064 ± 0.008
-35	0	0.023 ± 0.008
	1.0	0.142 ± 0.016
	2.0	0.24 ± 0.05
	3.0	0.30 ± 0.04
	4.0	0.37 ± 0.06
	6.0	0.44 ± 0.08
	6.5	0.47 ± 0.09
-25	0	0.077 ± 0.011
	1.0	0.312 ± 0.038
	2.0	0.517 ± 0.076
	3.0	0.680 ± 0.086

 Table S2. Observed rate constants for reactions of styrene with CYP119 Compound I.

^aIn 1:1 solutions of glycerol and 100 mM potassium phosphate buffer (pH 7.4). ^b \pm 0.2 °C.

^cErrors are 1σ .

Table S3. Observed rate constants for reactions of benzyl alcohol- d_2 with CYP102_{HD}Compound I.^a

Temp $(^{\circ}C)^{b}$ [$BA-d_2]$ (mM)	$k_{\rm obs} ({\rm s}^{-1})^{\rm c}$
-20	0	0.0056 ± 0.0003
	0.3	0.20 ± 0.02
	0.5	0.36 ± 0.05
	1.0	0.57 ± 0.05

^aThe substrate was C₆H₅CD₂OH (see ref 17 in text). Reactions were conducted in 1:1 solutions of glycerol and 100 mM potassium phosphate buffer (pH 7.4) as described in the Experimental Section of the text and in ref 17 of the text. ^b \pm 0.2 °C. ^cErrors are 1 σ .