Supplementary Information for Nicotine Binding to Brain Receptors Requires a Strong Cation-π Interaction Xinan Xiu, Nyssa L. Puskar, Jai A. P. Shanata, Henry A. Lester, and Dennis A. Dougherty* *To whom correspondence should be addressed. E-mail: dadougherty@caltech.edu ## **Supplementary Figures** | | Loop A | Loop B | Loop C | | | | | | |------------------|------------------------|-----------------|-----------------------|--|--|--|--|--| | α 1 mouse | WRPDVVL | W T Y D G S V V | Y S C C P T T P Y L D | | | | | | | lpha1 human | W R P D L V L Y | W T Y D G S V V | Y S C C P D T P Y L D | | | | | | | lpha2 human | WIPDIVL <mark>Y</mark> | W T Y D K A K I | Y D C C A E - I Y P D | | | | | | | lpha4 human | W R P D I V L Y | W T Y D K A K I | Y E C C A E - I Y P D | | | | | | | α 4 rat | W R P D I V L Y | W T Y D K A K I | Y E C C A E - I Y P D | | | | | | | lpha3 human | W K P D I V L Y | w sydkaki | YNCCEE-IYPD | | | | | | | lpha6 human | W K P D I V L Y | W T Y D K A E I | YNCCEE-IY TD | | | | | | | lpha7 human | W K P D I L L Y | W S Y G G W S L | Y E C C K E - P Y P D | | | | | | | α 7 rat | W K P D I L L Y | W S Y G G W S L | Y E C C K E - P Y P D | | | | | | | lpha9 human | W R P D I V L Y | W T Y N G N Q V | YGCCSE-PYPD | | | | | | | | | | | | | | | | | | Loop D | | | | | | | | | γ mouse | W I E M Q W | | | | | | | | | γ human | W I E M Q W | | | | | | | | | δ mouse | WIDHAW | | | | | | | | | δ human | W I E H G W | | | | | | | | | β2 human | W L T Q E W | | | | | | | | | β2 rat | W L T Q E W | | | | | | | | | β3 human | W L K Q E W | | | | | | | | | β4 human | W L K Q E W | | | | | | | | | lpha7 human | W L Q M S W | | | | | | | | | α 7 rat | W L Q M S W | | | | | | | | | lpha9 human | WIRQIW | | | | | | | | **Supplementary Figure 1.** Sequence alignment for Loops A, B, C, and D in the vicinity of the aromatic binding box. The five residues of the aromatic box: TyrA, TrpB, TryC1, TyrC2, and TrpD are highlighted in green. They are universally conserved in these subunits. G135 (α 1) is the fourth residue after TrpB, highlighted in blue. **Supplementary Figure 2.** Rectification behaviors of A2B3 and A3B2 L9'A α 4 β 2 nAChR. Upper: Representative voltage traces and current responses for voltage jump experiments. Lower: I-V curves for A2B3 (solid line) and A3B2 (dotted line). The inset shows positive voltages, where A2B3 and A3B2 exhibit markedly different behavior. **Supplementary Figure 3.** Comparison of P_{open} at macroscopic EC_{50} for wild type and F_3 -TrpB $\alpha 4\beta 2$ (A2B3) over a range of τ_{crit} values between 5 ms and 5000 ms reveals essentially equivalent gating behaviors. Error bars are mean \pm s.e.m. and are smaller than the symbol when not shown. | α 4(L9'A) β2 | | | | | | | | | | | | | | | | |-----------------------------------|-------|----|-------|-----|----------------|------|---------|------|-------|-----|----------------|-----|--------|------|-------| | Mutation | Δ | Ch | 1 | | n _H | | Nic | oti | ne | | n _H | | Norm. | l (+ | 70mV) | | Wild type | | | | | | | | | | | | | | | | | A2B3 | 0.42 | ± | 0.01 | 1.2 | ± | 0.1 | 0.08 | ± | 0.01 | 1.2 | ± | 0.1 | 0.041 | ± | 0.005 | | A3B2 | 0.023 | ± | 0.001 | 1.3 | ± | 0.1 | 0.01 | ± | 0.001 | 1.7 | ± | 0.2 | 0.297 | ± | 0.041 | | | | | | | | - | (Tyr98) | A2E | 33 | | | | | | | | Tyr | 0.42 | ± | 0.03 | 1.2 | ± | 0.1 | 0.08 | ± | 0.01 | 1.7 | ± | 0.3 | 0.023 | ± | 0.009 | | Phe | 12 | ± | 1 | 1.3 | ± | 0.1 | 0.77 | ± | 0.05 | 2.1 | ± | 0.3 | 0.064 | ± | 0.011 | | MeO-Phe | 2.3 | ± | 0.2 | 1.2 | ± | 0.1 | 0.40 | ± | 0.02 | 1.7 | ± | 0.2 | 0.054 | ± | 0.032 | | F-Phe | 15 | ± | 1 | 1.2 | ± | 0.1 | 0.32 | ± | 0.03 | 1.4 | ± | 0.2 | -0.076 | ± | 0.046 | | F ₂ -Phe | 16 | ± | 2 | | | 0.3 | 0.39 | ± | 0.05 | 1.8 | ± | 0.4 | 0.028 | ± | 0.005 | | F ₃ -Phe | 14 | ± | 1 | 1.2 | ± | 0.1 | 0.53 | ± | 0.04 | 1.4 | ± | 0.1 | 0.044 | ± | 0.010 | | Br-Phe | 3.3 | ± | 0.2 | 1.2 | ± | 0.1 | 0.54 | ± | 0.04 | 1.5 | ± | 0.1 | -0.003 | ± | 0.031 | | CN-Phe | 73 | ± | 4 | 1.7 | ± | 0.1 | 8.8 | ± | 0.9 | 1.5 | ± | 0.2 | 0.075 | ± | 0.008 | | TrpB (Trp 154) A2B3 | | | | | | | | | | | | | | | | | Trp | 0.44 | ± | 0.03 | 1.3 | ± | 0.1 | 0.09 | ± | 0.01 | 1.5 | ± | 0.1 | 0.006 | ± | 0.014 | | F-Trp | 1.9 | ± | 0.1 | 1.2 | ± | 0.1 | 0.26 | ± | 0.02 | 1.3 | ± | 0.1 | -0.065 | ± | 0.047 | | F ₂ -Trp | 2.0 | ± | 0.1 | 1.3 | ± | 0.1 | 0.32 | ± | 0.04 | 1.3 | ± | 0.1 | 0.032 | ± | 0.025 | | F ₃ -Trp | 13 | ± | 1 | 1.3 | ± | 0.1 | 1.2 | ± | 0.1 | 1.4 | ± | 0.2 | -0.073 | ± | 0.029 | | F ₄ -Trp | 29 | ± | 2 | 1.1 | ± | 0.1 | 4.2 | ± | 0.4 | 1.3 | ± | 0.2 | -0.027 | ± | 0.023 | | CN-Trp | 12 | ± | 1 | 1.2 | ± | 0.1 | 0.90 | ± | 0.07 | 1.4 | ± | 0.1 | 0.009 | ± | 0.017 | | Br-Trp | 1.1 | ± | 0.1 | 1.3 | ± | 0.1 | 0.20 | ± | 0.02 | 1.3 | ± | 0.2 | 0.020 | ± | 0.005 | | | | | | | T | yrC1 | (Tyr195 |) A2 | 2B3 | | | | | | | | Tyr | 0.42 | ± | 0.03 | 1.5 | ± | 0.1 | 0.07 | ± | 0.01 | 1.3 | ± | 0.1 | 0.042 | ± | 0.014 | | Phe | 53 | ± | 4 | 1.3 | ± | 0.1 | 3.3 | ± | 0.2 | 1.2 | ± | 0.1 | 0.059 | ± | 0.014 | | MeO-Phe | 48 | ± | 5 | 1.4 | ± | 0.2 | 2.8 | ± | 0.4 | 1.2 | ± | 0.2 | 0.064 | ± | 0.028 | | CN-Phe | 210 | ± | 10 | 1.6 | ± | 0.1 | 19 | ± | 2 | 1.6 | ± | 0.2 | 0.057 | ± | 0.011 | | TyrC2 (Tyr202) A2B3 | | | | | | | | | | | | | | | | | Tyr | 0.42 | ± | 0.03 | 1.3 | ± | 0.1 | 0.09 | ± | 0.01 | 1.6 | ± | 0.1 | 0.057 | ± | 0.016 | | Phe | 0.32 | ± | 0.02 | 1.4 | ± | 0.1 | 0.14 | ± | 0.01 | 1.4 | ± | 0.1 | 0.014 | ± | 0.010 | | MeO-Phe | 0.33 | ± | 0.02 | 1.3 | ± | 0.1 | 0.097 | ± | 0.006 | 1.7 | ± | 0.2 | 0.034 | ± | 0.033 | | CN-Phe | 0.42 | ± | 0.04 | 1.4 | ± | 0.2 | 0.11 | ± | 0.01 | 1.6 | ± | 0.2 | 0.066 | ± | 0.046 | | Thr (B+1) (Thr 155) A2B3 | | | | | | | | | | | | | | | | | Thr | 0.41 | ± | 0.02 | 1.4 | | 0.1 | 0.09 | • | 0.01 | 1.6 | ± | 0.1 | 0.044 | ± | 0.007 | | Tah | 0.37 | ± | 0.02 | 1.3 | ± | 0.1 | 1.71 | ± | 0.14 | 1.2 | ± | 0.1 | 0.018 | ± | 0.013 | | Muscle-type Receptor ^a | | | | | | | | | | | | | | | | | Thr (B+1) (Thr150) ^b | | | | | | | | | | | | | | | | | Thr | 0.83 | ± | 0.04 | 1.8 | ± | 0.1 | 57 | ± | 2 | 2.1 | ± | 0.1 | ND | | | | Tah | 0.25 | ± | | | | 0.1 | 92 | ± | 4 | 1.7 | ± | 0.1 | ND | | | | α1(G153K) | | | | | | | | | | | | |---------------------|-------|---|-------|-------|-----|------|---|------|-------|-----|----| | Trp | 0.019 | ± | 0.001 | 1.5 ± | 0.1 | 0.59 | ± | 0.04 | 1.8 ± | 0.2 | ND | | F-Trp | 0.094 | ± | 0.004 | 1.6 ± | 0.1 | 2.8 | ± | 0.1 | 1.3 ± | 0.1 | ND | | F ₂ -Trp | 0.079 | ± | 0.004 | 1.3 ± | 0.1 | 2.3 | ± | 0.1 | 1.3 ± | 0.1 | ND | | F ₃ -Trp | 1.05 | ± | 0.03 | 1.3 ± | 0.1 | 11 : | ± | 1 | 1.5 ± | 0.1 | ND | | F₄-Trp | 7.5 | ± | 0.5 | 1.2 ± | 0.1 | 32 | ± | 4 | 1.5 ± | 0.2 | ND | | CN-Trp | 2.4 | ± | 0.1 | 1.5 ± | 0.1 | 36 | ± | 3 | 1.7 ± | 0.2 | ND | | Br-Trp | 0.047 | ± | 0.001 | 1.4 ± | 0.1 | 4.45 | ± | 0.42 | 1.2 ± | 0.1 | ND | **Supplementary Table 1.** EC₅₀ values (μ M), Hill coefficients (n_H) and current size at +70 mV (normalized to current size at -110 mV). ND = not determined. a. All studies of the muscle-type receptor contain a L9'S mutation in the β subunit. b. These values were previously reported²⁵. ## Supplementary Discussion ### Controlling the Stoichiometry of $\alpha 4\beta 2$ Receptors As in the case of previous studies, we find that the stoichiometry of $\alpha 4\beta 2$ receptors can be controlled by altering the ratio of the subunits of mRNA during injection. Our criteria for defining a pure population of A2B3 $\alpha 4(L9^{\circ}A)\beta 2$ receptors are whole-cell dose-response curves that fit a single component and very strong inward rectification such that $(I_{max}$ at +70 mV)/ $(I_{max}$ at -110 mV) < 0.1. An alternative analysis which can also demonstrate a mixed population of receptors is the production of intermediate EC₅₀ values when fit to a single component. As shown below, by a 3:1 $\alpha 4$: $\beta 2$ mRNA ratio, the EC₅₀ value has reached the higher EC₅₀ value, which is the A2B3 stoichiometry. | α 4: β 2 ratio | EC ₅₀ (μM ACh) | |-----------------------------|---------------------------| | 100:1 | 0.023 ± 0.002 | | 10:1 | 0.023 ± 0.001 | | 6:1 | 0.15 ± 0.02 | | 3:1 | 0.44 ± 0.03 | | 1:1 | 0.40 ± 0.01 | | 1:10 | 0.43 ± 0.02 | Injection of an mRNA ratio $\alpha 4(L9'A)$: $\beta 2$ of 10:1 or higher produces pure populations of A3B2, while a ratio of 1:3 or lower guarantees a pure population of A2B3. In the experiments described here, we injected a 1:3 ratio of mRNA. Note that the $\alpha 4(L9'A)$ mutation lowers EC_{50} in a multiplicative fashion, depending on how many $\alpha 4$ subunits are present. As such, our A3B2 receptor (with three L9'A mutations) actually has a lower EC_{50} than our A2B3 receptor (with two L9'A mutations), even though the binding site from the A2B3 stoichiometry is clearly that of the high sensitivity receptor. ## TyrA, TyrC1, and TyrC2 Display Similar Interactions in Muscle-type and α4β2 In addition to TrpB, we have performed extensive studies of other aromatic residues in and around the aromatic box (Supplementary Table 1). Briefly, when comparing $\alpha 4\beta 2$ to the muscle-type receptor, very similar results are seen. TyrC1 is very sensitive to substitution, establishing a key role for this residue, likely in receptor gating. TyrA appears to be a hydrogen bond donor (large effects for Phe and MeO-Phe substitutions), and while it is generally more sensitive to perturbations in the neuronal receptor, the basic trends are the same. TyrC2 is very permissive in both the muscle-type and $\alpha 4\beta 2$ receptors. #### **Single-Channel Recording and Analysis** Here we have used single-channel measurements to convincingly establish that the fluorination approach is changing agonist binding, not channel gating. Macroscopic data establish the large successive shift in function (EC₅₀) upon fluorination, and single-channel data establish that gating is unperturbed, since the probability that the channel is open, P_{open} , is essentially indistinguishable for wild type and F_3 -TrpB at corresponding points on the doseresponse relation. At saturating agonist concentrations, $P_{open,max}$ approaches $\Theta/(\Theta+1)$. Our analysis starts by comparing the P_{open} values at the macroscopic EC₅₀. The P_{open} values that we report are directly related to the gating equilibrium constant, Θ , by ½ * $\Theta/(\Theta+1)$. #### Definition of clusters and calculation of P_{open} Because (a) single-channel channel measurements of P_{open} are seldom reported for $\alpha 4\beta 2$ receptors, and (b) we find that P_{open} depends strongly on the value chosen as the critical closed duration, τ_{crit} , we report P_{open} values for the range 5 ms $\leq \tau_{crit} \leq 5000$ ms using two different methods to identify τ_{crit} (below and Supplementary Fig. 3, above). The first is the commonly used method: the longest one or more components of the closed dwell time histogram are considered as sojourns in the desensitized state for all of the channels in the patch³². The value for τ_{crit} was defined based on the closed dwell time histograms fitted with multiple components, as previously described³³. These components are similar for wild type and F_3 -TrpB, resulting in similar τ_{crit} values: τ_{crit1} of 1470 vs 1530 ms and τ_{crit2} of 42 vs 52 ms, respectively. The similarity of the closed dwell time histograms for these receptors (and the resultant τ_{crit} values) can be taken as evidence that fluorination does not significantly impact desensitization. Moreover, whole-cell data show that the wild type and the F_3 -TrpB receptors exhibit similar extent and kinetics of macroscopic desensitization (data not shown). When either of the τ_{crit} values calculated from the closed dwell time histogram is applied, P_{open} is essentially indistinguishable for wild type and F_3 -TrpB. The P_{open} values for wild type and F_3 -TrpB at τ_{crit1} and τ_{crit2} are given here \pm s.e.m. | Receptor | P _{open} (τ _{crit1}) | P_{open} (τ_{crit2}) | |----------------------|---|-------------------------------| | Wild type | 0.07 ± 0.02 | 0.88 ± 0.06 | | F ₃ -TrpB | 0.06 ± 0.03 | 0.82 ± 0.05 | Because our recordings are at an intermediate concentration (EC₅₀), some closed dwells may reflect agonist dissociation, others may reflect channel closure followed by re-opening without agonist dissociation, while still others may reflect sojourns in desensitized states of varying duration. As a result, a definition of τ_{crit} can be distorted by the relatively low number of long non-conducting sojourns. Thus, we also compared calculated P_{open} values for a wide range of possible τ_{crit} values (3 orders of magnitude), including those calculated from the closed dwell time histogram. Supplementary Fig. 3 shows that, regardless of how we define τ_{crit} (5 ms $\leq \tau_{crit} \leq$ 5000 ms), no systematic difference in P_{open} is observed between wild type and F_3 -TrpB with nicotine as agonist—their gating behaviors are essentially indistinguishable. Thus, the value chosen for τ_{crit} does not affect our conclusion that the gating behavior, as measured by P_{open} , is not significantly impacted upon fluorination in the F_3 -TrpB mutant. A small shift in the channel open duration does not account for the EC_{50} shift of F_3 -TrpB Fits to open dwell time histograms reveal that the main component of the channel open duration, which accounted for >90% of the conductance in both wild type and F_3 -TrpB receptors, is shifted 2.4-fold, from 23 ms (wild type) to 9.6 ms (F_3 -TrpB). Because the closed dwell time histograms, fitted with multiple components, displayed similar contributions from the major components for wild type and F_3 -TrpB, interpreting the 2.4-fold shift in open duration in terms of the channel closing rate, α , would imply a modest 2.4-fold shift in Θ in the F_3 -TrpB receptor. We consider these results in terms of a standard, linear 4-state model with two sequential agonist binding steps followed by a gating step: $$A + R^{c} \xrightarrow{2k_{1}} A + AR^{c} \xrightarrow{k_{1}} A_{2}R^{c} \xrightarrow{\beta} A_{2}R^{c}$$ for which, $$EC_{50} = \frac{K_D}{\sqrt{\Theta + 2} - 1}$$ where K_D is the equilibrium agonist dissociation constant (k_{-1}/k_1) and Θ is the gating equilibrium constant (β/α) . We see that a 2.4-fold change in Θ accounts for at most a 1.5-fold shift in EC_{50} . Thus, both comparison of P_{open} as well as consideration of kinetics, to the extent possible for data at EC_{50} , indicate that the overwhelming majority of the 15-fold increase in nicotine's EC_{50} in the F_3 -TrpB receptor versus wild type is caused by changes to binding rather than the subsequent conformational changes that open the channel. Taken together, macroscopic and single-channel experiments show that fluorination modulates nicotine binding in a way that is systematically correlated to the energy of a cation- π interaction. # Supplementary Notes - Sakmann, B., Patlak, J., and Neher, E., Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. *Nature* **286** (5768), 71 (1980). - Jackson, M. B. et al., Successive openings of the same acetylcholine receptor channel are correlated in open time. *Biophysical journal* **42** (1), 109 (1983).