SUPPLEMENTAL MATERIAL

Fig. 1S. *Ms***PimA is a monomer in solution**. Gel filtration chromatography was performed using a BioSuite 250 5 μ m HR SEC column (Waters Corporation) equilibrated in 50 mM Tris-HCl pH 6.8 and 150 mM NaCl at 1 ml/min. The column was previously calibrated using gel filtration standards (Sigma) including β -amylase (200 kDa), alcohol dehydrogenase (150 kDa), bovine serum albumin (66 kDa), carbonic anhydrase (29 kDa) and cytochrome c (12.4 kDa).

Fig. 2S. Limited proteolysis of *Ms*PimA. The N-terminal residues of the two prominent proteolytic fragments are indicated.

Fig. 3S. Thermal unfolding of *Ms*PimA-guanosine complex monitored by DSC. The excess heat capacity curve of *Ms*PimA in the presence of a saturation concentration of guanosine (•) is shown with its low and high temperature contribution peaks (•). The $C_{p,ex}$ curve of free *Ms*PimA (-) and its low and high temperature contribution peaks (•) are reported for comparison. *Ms*PimA with guanosine shows no significant changes in $T_{1/2}$ and ΔH_u with respect to the free *Ms*PimA protein. Guanosine increases $\Delta H_{u,1}$ by 6.0 ± 1.6 kcal mol⁻¹ and decreases $\Delta H_{u,2}$ by 5.6 ± 1.6 kcal mol⁻¹ (Table 1), in agreement with the low guanosine binding affinity for *Ms*PimA (see Figure 2D).

Fig. 4S. Structural alignment of GT-B peripheral-membrane binding GTs. Molecular surface representation of *Ms*PimA and several GT-B fold lipid-binding GTs, showing the position of the positive-charged clusters in the N-terminal domains. The structures are displayed in the same orientation after structural alignment.

Mutation	5'-3' oligonucleotide sequence	Plasmid name
Q18A	F GTGCCGGGTGGCGTGGCGTCCCACGTGCTCCAG R CTGGAGCACGTGGGACGCCACGCCACCCGGCAC	pET29MsPimA-Q18A
Y62A	F GCCGTGCCGATCCCGGCCAACGGCTCGGTGGCG R CGCCACCGAGCCGTTGGCCGGGATCGGCACGGC	pET29MsPimA -Y62A
N63A	F GTGCCGATCCCGTACGCCGGCTCGGTGGCGCGG R CCGCGCCACCGAGCCGGCGTACGGGATCGGCAC	pET29MsPimA -N63A
S65A	F ATCCCGTACAACGGCGCGGTGGCGCGGGCTGCGG R CCGCAGCCGCGCCACCGCCGCTGTACGGGAT	pET29MsPimA -S65A
R68A	F AACGGCTCGGTGGCGGCGCGCGCGGCGGCGGCGG R CGGCCCGAACCGCAGCGCCGCCACCGAGCCGTT	pET29MsPimA -R68A
R70A	F TCGGTGGCGGCGGCTGGCGTTCGGGCCGGCCACG R CGTGGCCGGCCCGAACGCCAGCCGCGCCACCGA	pET29MsPimA -R70A
N97A	F ACATCCACGAGCCGGCCGCGCGAGCCTGTCG R CGACAGGCTCGGCGCGGCCGGCTCGTGGATGT	pET29MsPimA -N97A
T119A	F TCGCGACGTTCCACGCGTCGACCACGAAGTCG R CGACTTCGTGGTCGACGCGTGGAACGTCGCGA	pET29MsPimA -T119A
K123A	\mathbf{F} CACACGTCGACCACGGCGTCGTTGACGCTCAGC \mathbf{R} GCTGAGCGTCAACGACGCCGTGGTCGACGTGTG	pET29MsPimA -K123A
R196A	F TGTTGTTCCTGGGGGGCGTACGACGAACCGCGC R GCGCGGTTCGTCGTACGCCCCCAGGAACAACA	pET29MsPimA -R196A
E199A	F TGGGGCGGTACGACGCACCGCGCAAGGGCATGG R CCATGCCCTTGCGCGGTGCGTCGTACCGCCCCA	pET29MsPimA -E199A
R77E/K78E/ K80E/K81E	\mathbf{F} GGGCCGGCCACGCACGCCGCGGTCGCGGCGTGGATCGCCGAGGGC \mathbf{R} GCCCTCGGCGATCCACGCCGCGACCGCGGCGTGCGTGGCCGGCC	pET29MsPimA- R77E/K78E/ K80E/K81E

Table 1S. Complementary oligonucleotide used to introduce mutations in MsPimA gene.

GT-B Family	Catalytic mechanism	Membrane associated	Non-membrane associated
GT1	Inverting	Alg13/Alg14 (2JZC, <i>PPI^a</i>), Ugt2b7 (2O6L, <i>AαH</i>)	OGT/NGT (2VCH), GtfA (1PN3), GtfB (11IR), GtfD (1RRV), CalG3 (3DOR), OleD (2IYF), OleI (2IYA), UrdGT2 (2P6P), UGT85H2 (2PQ6), UGT71G1 (2ACV), Ufgt (2C1Z)
GT4	Retaining	PimA (2GEJ, $A \alpha H^c$), WaaG (2IV7, $A \alpha H$)	MshA (3C4V), SpsA (2R68),
GT5	Retaining	NO	AtGlgA (1RZU), PaGlgA (2BIS)
GT9	Inverting	WaaF (1PSW, <i>AαH</i>), WaaC (2H1F, <i>AαH</i>)	NO
GT10	Inverting	FucT (2NZY, TM^b)	NO
GT20	Retaining	NO	OtsA (1GZ5)
GT23	Inverting	FUT8 (1DE0, <i>TM</i>), NodZ (1HHC, <i>TM</i>)	NO
GT28	Inverting	MurG (1NLM, $A\alpha H$)	NO
GT35	Retaining	NO	GP (3GPB), MalP (1AHP)
GT63	Inverting	NO	BGT (1BGT)
GT70	Inverting	GumK (3CV3, <i>A</i> α <i>H</i>)	NO
GT72	Retaining	NO	AGT (1XV5)
GT80	Inverting	ST1 (2IHZ, <i>TM</i>), ST (2Z4T, <i>TM</i>)	NO

Table 2S. Structural comparision of GT-B enzymes.

^{*a}PPI*: protein-protein interaction.</sup>

^{*b}</sup><i>TM*: transmembrane peptide.</sup>

 $^{c}A\alpha H$: amphiphatic alpha helix.

GtfA, dTDP- β -L-4-epi-epivancosamine: epivancosaminyltransferase from *Amycolatopsis orientalis* A82846 ; GtfB, TDP/UDP-glucose:aglycosyl-vancomycin glucosyltransferase from Amycolatopsis orientalis A82846; GtfD. UDP-β-L-4-epi-vancosamine:vancomycin-pseudoaglycone vancosaminyltransferase from Amycolatopsis orientalis ATCC19795; CalG3, enediyne glycosyltransferase from *Micromonospora echinospora*; OleD, oleandomycin glycosyltransferase from Streptomyces antibioticus ATCC11891; OleI, oleandomycin glycosyltransferase from Streptomyces antibioticus ATCC11891; UrdGT2, urdamycin A glycosyltransferase II from Streptomyces fradiae T2717; OGT/NGT, 2,5-DHBA-, 3,4-DHBA-glucosyltransferase, from Agrobacterium tumefaciens; Ugt2b7, UDP-glucuronosyltransferase 2B7 from Homo sapiens; **UGT85H2**, UDP-glucose : (iso)flavonoid β -glucosyltransferase from *Medicago truncatula*; **UGT71G1**, UDP-glucose : flavonoid β -glucosyltransferase from *Medicago truncatula*; Alg13, UDP-GlcNAc : Dol-PP-GlcNAc N-acetylglucosaminyltransferase from Saccharomyces cerevisiae S288C; Ufgt, UDP-Glc: anthocyanidin 3-O-glucosyltransferase from Vitis vinifera; PimA, GDP-Man: phosphatidylinositol mannosyltransferase from Mycobacterium smegmatis; MshA, UDP-GlcNAc: inositol-P N-acetylglucosaminyltransferase from Corynebacterium glutamicum; WaaG, UDP-Glc: L-glycero-D-manno-heptose II -1.3-glucosyltransferase I. from Escherichia coli K12; SpsA, sucrose phosphate synthase from *Halothermothrix orenii*; AviGT4, eurekanate-attachment enzyme from Streptomyces viridochromogenes Tue57; GS, glycogen synthase from Pyrococcus abyssi GE5 Orsay; GS, glycogen synthase from Agrobacterium tumefaciens; WaaF, heptosyltransferase II from Escherichia coli K12; WaaC, heptosyltransferase I from Escherichia coli K12; FucT α-1,3-fucosyltransferase (FucT) from Helicobacter pylori NCTC 11639; OtsA, α,αtrehalose-phosphate synthase from Escherichia coli; Fut8, N-acetyl-D-glucosaminide -1,6-L-

fucosyltransferase from *Homo sapiens*; **NodZ**, α -1,6-L-fucosyltransferase from *Bradyrhizobium sp* WM9; **MurG**, UDP-GlcNAc: N-acetylmuramyl-(pentapeptide)-PP-C55 N-acetylglucosaminyltransferase from *Escherichia coli* K12; **MalP**, maltodextrin phosphorylase from Escherichia coli ; **GP**, glycogen phosphorylase from *Oryctolagus cuniculus*; **BGT**, UDP-Glc: DNA β -glucosyltransferase from *Bacteriophage* T4; **GumK**, UDP-GlcA: (xanthan) α -Man-(1,3)- β -Glc-(1,4)- α -Glc-PP-polyisoprenyl β -1,2-glucuronosyltransferase from *Bacteriophage* T4; **ST1**, CMP-NeuA : α -2,3/2,6-sialyltransferase / sialidase from *Pasteurella multocida* ATCC 15742; **ST**, CMP-NeuAc: β -galactoside α -2,6-sialyltransferase from *Vibrionaceae Photobacterium* sp. JT-ISH-224 (for further details please see <u>www.cazy.org</u>).

Figure 1S

Figure 2S

Figure 3S

Figure 4S