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SUPPORTING INFORMATION 

 
S1: Simple Picture - Iron (Fe2+), quinone energy levels 
 
The non-heme iron center of the BRC is high spin d6 (Fe2+, S = 2) (1).  The number of 
distinct electronic configurations (210) that the system can adopt is prohibitively large, 
posing a daunting theoretical exercise.  The problem can be significantly simplified by 
assuming the ground state is a quintet (2S+1), energetically well removed from higher 
electronic states.  (e.g. see (1) for a justification of this).   
 The energy level splittings within the ground state orbital manifold can be well 
described using the spin Hamiltonian formalism with quadratic zero-field parameters; the 
axial (D) and rhombic (E) terms.  For the BRC, the D and E terms were estimated as 7.6 and 
1.9 K respectively, using bulk magnetization measurements (2).  This yields a ground to first 
excited state energy difference of ~3 K, and a ground to second excited state energy 
difference of ~12 K.   
When weakly coupled to the QA

- center, each singlet sublevel of the iron manifold becomes a 
Kramer’s doublet, which splits in the presence of a magnetic field.  Allowed ESR transitions 
occur within these doublets (i.e. 5 observable spin-allowed transitions, all contributing to the 
observed ESR semiquinone-iron signal, Fig. s1).  In these studies the microwave frequency 
(9 GHz, 0.43 K) is too low to induce transitions between doublet states.  Over the 
temperature range (5-20 K) used here the ESR signal is dominated by the two lowest doublet 
transitions.    
 

 
 
Figure s1: Pictorial representation of the energy-levels of the semiquinone-iron system 
 
 
S2: Decomposition of the semi-quinone iron signal: effective gX, ,gY, gZ positions 
 
It is instructive to examine how the iron-semi-quinone signals arise.  The ESR spectrum of 
the isolated semi-quinone radical is near isotropic at g~2.  Addition of the Fe2+ center 
introduces a magnetization (effective internal magnetic field) along the molecular y axis.  The 
electron spin on the quinone then sees two distinctly different environments.  When viewed 
along either x or z, the system appears unperturbed (transition at g~2).  Along y, the semi-
quinone sees an effective magnetic field from the external field and the iron induced internal 
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field.  For the ground state, as the magnetization of the Fe2+ sublevel is negative, the effective 
field is decreased, shifting the ESR transition to higher external field. Similarly, for the 1st 
excited state the total effective field is raised, shifting the ESR transition to lower external 
field.  A pictorial representation of the powder pattern spectra corresponding to the ground 
and 1st excited state transitions is shown in Fig. s2 A.  2nd order effects lead to a breaking of 
the x, z degeneracy as seen in the real systems as indicated in Fig. s2 B, C.  The maxima of 
the ground and first excited state appear symmetrically about g~1.8 for the BRC signal.  
Their sum yields the relatively sharp prominent feature of the ESR signal.  The absorbance 
spectrum of the g~1.9 signal is very similar.  Compared to the g~1.84 signal, the maximum 
for each doublet (nominally the average of the effective gX and gZ positions) separate; the 
ground state maximum shifts to high field, the first excited state maximum to low field.  This 
decomposition is consistent with the temperature dependence of the signal - the high field 
edge is lost as the observation temperature increases.   
 

 
 
Figure s2: Decomposition of the semiquinone-iron signal into its two lowest ESR 

transitions.  Marked g positions (gX, gY, gZ) show the effective g tensor values as 
calculated by third order perturbation theory (see text).  Panel A: simple theory; 
panel B: g~1.84 signal; panel C: g~1.9 signal.   
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S3: Perturbation analysis of the g~1.9 semi-quinone iron signal; the uniqueness of the 
simulation 
 
The Spin Hamiltonian (Eq. 1) has 8 independent variables: gX, gY, gZ, JX, JY, JZ, D and E. In 
the simulation of the g~1.84 signal in BRC (1), the iron g tensor and fine structure 
parameters had been determined by bulk magnetization measurements prior to the simulation 
(2). This limited the number of independent variables in this simulation to three.  The same 
experimental data were not available for this work; no independent estimate of the fine 
structure or g tensor parameters has been made for PS II.  As a consequence, an effort was 
made to examine the uniqueness of the system’s optimized parameter set (see Fig. 3, Table 1) 
using analytical relationships derived from perturbation theory.  We note that the structural 
equivalence of PS II and BRC (3-6) strongly suggests that these parameters will be very 
similar.  Hence we limited this investigation to the parameter set where the exchange and 
zero-field tensor components were comparable to estimates for the BRC i.e. 1-20 K. 
 
Butler et al (1) used 3rd order perturbation theory to derive expressions (in terms of the 
exchange coupling, zero-field parameters etc) for the effective g-value positions as shown in 
Fig. 5 B.  The effective Hamiltonian for each doublet of the system takes the form (1): 

Qi
'
ii SgHE H        (A1) 

 
Here Ei describes all terms that are independent of the operator SQ, while gi is the diagonal 
effective g tensor (with principle values defining the turning points of the absorbance 
spectrum shown above).  The solution to this effective Hamiltonian along the three principle 
axes is provided below.   
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(A2) (Taken from Butler et al (1)) 
 
All tensors taken to be diagonal, subscripts refer to the xx, yy and zz components etc 
gi is the effective g-tensor for the ith doublet 
gi

(0) is the zero order result for the g-value 
gi

(x) is the xth order correction to the g-value 
J is the exchange coupling tensor 
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Eij is the zero field energy difference between doublets i and j 
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As discussed above, the mean position of the gX and gZ turning points in either the ground or 
first excited state for the g~1.84 signal are at g = 1.8 (see Fig. s2).  That is to say: 
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For the g~1.9 signal analogous equations can be generated.  Here though the mean positions 
of gX and gZ differs for the ground and first excited state.  

excitedst189.1)gg(2
1
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1
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    (A5) 

 
Hence for either signal we can impose two constraints.  As the parameter space for the 
g~1.84 signal is three (the J tensor principal values), this system of equations has one degree 
of freedom.  By comparison, the g~1.9 signal has eight free parameters (gFe tensor, J tensor, 
fine structure tensor) and consequently a total of six degrees of freedom.   
To further reduce the free parameter set for the g~1.9 signal simulation, the g tensor of the 
iron was assumed to be the same as for the g~1.84 signal, as it was observed that varying the 
components of the iron g tensor had little effect on the overall fit.  This assumption reduced 
the degrees of freedom for the g ~1.9 system to three.   
 
Fig. s3 graphically demonstrates the solutions to Eqs. A4 and A5.  Panel A shows the 
original solutions of Bulter et al. (1) (g~1.84 signal) for Eq. 3 with the simulation fit values 
for the J components superimposed.  It can be seen that the numerical solution is near the 
point of maximum isotropy for J.  In this solution region JZ is always larger (in magnitude) 
than JX.  Panel B shows the solutions of Eq. 4 (g~1.9 signal), assuming the zero-field 
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splitting parameters of Bulter et al. (1)  This now requires JX to be larger (in magnitude) than 
JZ in the corresponding solution region.  Importantly however no good fit to the experimental 
spectrum could be obtained using these fine structure values (D = 7.6, E/D = 0.25).   
Panel C shows the solutions to Eq. A5 using the D and E values found necessary to fit the 
experimental spectra at both 5 and 15 K.  Here as when D = 7.6 K, the magnitude ordering of 
JX and JZ was opposite to that in panel A.  It was shown that this ordering inversion occurs 
for all plausible values of D (1-20 K).  Thus the solution fit parameters as determined for the 
g~1.9 signal are robust by this analysis.  Even though in exchange-coupled systems 
anisotropy is typically modest (1; 7), as indeed is seen for the g~1.84 signal, the exchange 
anisotropy occurring in the g~1.9 species appears to be genuinely large.  Interestingly, the 
isotropic component of the coupling is virtually the same in both the g~1.84 and g~1.9 forms 
(Table 1).   
 
Although the above analysis assumes that the exchange and zero field tensors are co-linear 
and the precise quantitative conclusions are contingent on this, qualitatively, a significant 
change in the relative orientation of the exchange tensor between the two signal types seems 
inescapable. 
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Figure s3: Estimates of the exchange coupling tensor for the semiquinone-iron signal 
along the three principle axes (see text).  Panel A: JX and JZ values as a function 
of JY (from Eq. 3) of the g~1.84 signal (as per Butler et al. 1984).  Panel B: JX 
and JZ values as a function of JY (from Eq. A4) of the g~1.9 signal, using zero-
field parameters as per Bulter et al. (D = 7.6 K, E/D = 0.25).  Panel C: JX and JZ 
values as a function of JY (from Eq. A5) of the g~1.9 signal, using the fitted zero-
field parameters determined here (D = 15.0 K, E/D = 0.25).  Filled and unfilled 
squares represent the simulation fit values of JX and JZ respectively.  The circles 
represent the minimum radius regions centered on the purely isotropic solution 
points, which include the simulation J values.   

 
S4: Powder Pattern 
 
The paramagnetic centers of a frozen ESR sample take all possible orientations (relative to 
the field axis), often referred to as a powder pattern.  As the semi-quinone iron system is 
anisotropic, to correctly simulate the ESR spectrum all unique orientations have to be 
included.   
The simulation code allows for this effect by using combination of Euler rotations ( and ) 
see diagram.  This system only requires two Euler rotations to define all unique orientations 
as rotation about the field axis does not alter the eigenvalues of the system. 
A generalized powder pattern code was adopted (shown below).  The typical number of  
angles used (n) ranged from 20-100.  Dummy variables x and y were used to uniformly 
sample the hemisphere.  For a given x () angle 1 to p(x+1) y () angles were sampled (with 
the entries of p(x) as defined below).  Note: for x =0 (,  was also set to zero.  
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       Eq. A6

 

 and  angles define the rotation matrix as below (8): 
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The unitary transformation 'RTRT*   was applied to the tensors (8): 
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        Eq. A7

 

 
S5: Transition Intensities 
 
The intensity of transition between the ith and jth state is given the equation below (9): 

2
Q1QFeFe1 jSHgSgHiI 

     Eq. A8
 

 
Where the oscillating H1 field lies in the x-y plane (perpendicular to H).  All of its possible 
orientations must be included to correctly estimate transition intensities.  This is achieved by 
averaging over the third Euler angle () (8).  H1 can be expressed as: 
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Integrating with respect to  yields: 
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The transition intensity can therefore be expressed as: 
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S6: Frequency to field correction 
 
An additional correction, first identified by Aasa and Vanngard (10), was required to 
accurately simulate the transition intensity.  This takes into account that equation A5, the 
transition intensity, is frequency rather than field dependent.   
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The integrated intensity of a EPR signal (of shape defined by S(H)) in frequency space is 
given by the equation below: 
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If we assume the line-shape function S(H) is Gaussian: 
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Assuming dH/dis constant over the Gaussian, the magnitude of the Gaussian in field space 
is simply proportional to the change in magnetization (dH/d. 
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S7: Full Matrix Representation of the Spin Hamiltonian  
 
The matrix representation of equation 1 is shown below: 
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Where: 
F = Zeeman term for the iron (Fe2+) center 
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S8: Simulation Code 
 
stacksize(10000000); 
 
abc=[0.9;.5;0.1;240;15;.27;11000]; 
 
function y=QA_fun(abc,m); 
 
// intial parameters 
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f=9.436557e9; 
B=0.92731e-20; 
P=2*%pi*1.05443e-27; 
PP=1.05443e-27*1.05443e-27; 
kb=1.38044e-16; 
 
// g tensor parameters 
 
gx=2.16; 
gy=2.27; 
gz=2.04; 
gq=2; 
 
// Exchange Interaction 
 
Jx=abc(1); 
Jy=abc(2); 
Jz=abc(3); 
 
// widths 
 
wx=[abc(4);abc(4);abc(4);abc(4);abc(4)]; 
wy=[abc(4);abc(4);abc(4);abc(4);abc(4)]; 
wz=[abc(4);abc(4);abc(4);abc(4);abc(4)]; 
 
 
// Resolution 
 
ss=100; 
hadj=30;   // resolution of field  
hadj1=30;   //field ranges we need 
nnn=30;   // number of beta angles (for powder pattern) 
HS=500;     // start of field 
RES=80; 
HF=HS+RES*ss; 
HG=450; 
mmm=5; 
 
// Temperature (at which the spectrum was taken) 
 
temp=5; 
temp1=15; 
D=abc(5); 
E=abc(6)*D; 
 
// Crystal Field Parameters 
 
Dx=-1/3*(D-3*E); 
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Dy=-1/3*(D+3*E); 
Dz=2/3*D; 
  
// Calculation Code 
 
K=[gx 0 0; 
   0 gy 0; 
   0  0 gz]; 
 
J1=2.0837e10*[Jx 0  0; 
              0  Jy 0; 
              0  0  Jz]; 
 
D1=2.0837e10*[Dx 0   0; 
              0  Dy  0; 
              0  0  Dz]; 
 
I=ones(ss,1); 
I2=ones(10,1); 
h=eye(10,10); 
u=zeros(10,1); 
T=zeros(ss,3); 
Q=zeros(ss,3); 
U1=ones(10,10); 
U2=tril(U1); 
N=[2;6^0.5;6^0.5;2]; 
 
// Powder Pattern 
 
for nn=1:nnn; 
 
nnx=90/(nnn-0.5); 
 
n(nn,1)=round((90/nnx)*sin((%pi/180)*nnx*(nn-1))); 
n(1,1)=1; 
 
end 
 
// Field Axis 
 
for s=1:ss; 
 
G(s,1)=HS+(s-1)*RES; 
 
end 
 
// Hamiltonian 
 
for x=0:(nnn-1); 
for y=1:n(x+1,1); 
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if x<1; 
b=0; 
a=0; 
else 
b=x*(90/(nnn-0.5))*(%pi/180); 
a=(90/n(x+1,1))*(y-0.5)*(%pi/180); 
end 
 
 
J=[cos(a)*cos(b)       sin(a)*cos(b)          -sin(b); 
    -sin(a)               cos(a)                 0  ; 
    cos(a)*sin(b)      sin(a)*sin(b)            cos(b)];   
 
gi=((gx*J(3,1))^2+(gy*J(3,2))^2+(gz*J(3,3))^2)^0.5;      
 
for hi=0:hadj1; 
 
H=HS+HG/2+hi*HG; 
 
hhh(hi+1,1)=H; 
 
M=zeros(10,10); 
M=sparse(M); 
R=zeros(10,10); 
R=sparse(R); 
S=zeros(10,10); 
S=sparse(S); 
U=zeros(10,10); 
F=zeros(10,10); 
totbolt=0; 
totbolt1=0; 
 
H0=(P*f)/(gi*B);      
 
K11=J*K*J'; 
J11=(P/(B))*J*J1*J'; 
D11=(P/(B))*J*D1*J'; 
 
for i=1:5; 
j=1+2*(i-1):2+2*(i-1); 
R(j,j)=K11(1,3)*(-2+(i-1)); 
S(j,j)=K11(2,3)*(-2+(i-1)); 
end 
 
for w=1:4; 
for i=1+2*(w-1):2+2*(w-1); 
R((2+i),i)=N(w,1)*(K11(1,1)-%i*K11(1,2))/2; 
R(i,(2+i))=N(w,1)*(K11(1,1)+%i*K11(1,2))/2; 
S((2+i),i)=N(w,1)*(K11(2,1)-%i*K11(2,2))/2; 
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S(i,(2+i))=N(w,1)*(K11(2,1)+%i*K11(2,2))/2; 
end 
end 
 
for i=1:5; 
j=1+2*(i-1); 
R(j+1,j)=gq/2; 
R(j,j+1)=gq/2; 
S(j+1,j)=gq/(2*%i); 
S(j,j+1)=-gq/(2*%i); 
end 
 
//electronic zeeman iron 
 
  //off diagonal (x and y) 
 
for w=1:4; 
for i=1+2*(w-1):2+2*(w-1); 
M((2+i),i)=H/(2)*N(w,1)*(K11(3,1)+%i*K11(3,2)); 
M(i,(2+i))=H/(2)*N(w,1)*(K11(3,1)-%i*K11(3,2)); 
end 
end 
 
  //diagonal (z) 
 
for i=1:5; 
for j=1+2*(i-1):2+2*(i-1); 
M(j,j)=H*K11(3,3)*(-2+(i-1)); 
end 
end 
 
//electronic zeeman quinone 
 
  //diagonal (z) 
   
for i=1:5; 
j=1+2*(i-1); 
M(j,j)=M(j,j)-gq*H/(2); 
M(j+1,j+1)=M(j+1,j+1)+gq*H/(2); 
end 
 
// Crystal Field 
 
  //diagonal (z) 
   
for i=1:5; 
for j=1+2*(i-1):2+2*(i-1); 
M(j,j)=M(j,j)+1/2*D11(3,3)*(3*(-2+(i-1))^2-6); 
end 
end 
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  //zero field coupling 1 
   
for i=1:3; 
for j=1+2*(i-1):2+2*(i-1); 
M(j+4,j)=M(j+4,j)+1/4*N(i+1,1)*N(i,1)*(D11(1,1)-D11(2,2)); 
M(j,j+4)=M(j,j+4)+1/4*N(i+1,1)*N(i,1)*(D11(1,1)-D11(2,2));   
end 
end 
 
  //zero field coupling 2 
 
for i=1:3; 
for j=1+2*(i-1):2+2*(i-1); 
M(j+4,j)=M(j+4,j)-1/2*%i*N(i+1,1)*N(i,1)*(D11(1,2)); 
M(j,j+4)=M(j,j+4)+1/2*%i*N(i+1,1)*N(i,1)*(D11(1,2));   
end 
end 
 
  //zero field coupling 4 
   
for i=1:4; 
for j=1+2*(i-1):2+2*(i-1); 
M(j+2,j)=M(j+2,j)+1/2*N(i,1)*(-2+(i-1))*D11(1,3); 
M(j,j+2)=M(j,j+2)+1/2*N(i,1)*(-2+(i-1))*D11(1,3);   
M(j+2,j)=M(j+2,j)+1/2*N(i,1)*(-1+(i-1))*D11(1,3); 
M(j,j+2)=M(j,j+2)+1/2*N(i,1)*(-1+(i-1))*D11(1,3); 
end 
end 
 
   //zero field coupling 5 
   
for i=1:4; 
for j=1+2*(i-1):2+2*(i-1); 
M(j+2,j)=M(j+2,j)-1/2*%i*N(i,1)*(-2+(i-1))*D11(2,3); 
M(j,j+2)=M(j,j+2)+1/2*%i*N(i,1)*(-2+(i-1))*D11(2,3);   
M(j+2,j)=M(j+2,j)-1/2*%i*N(i,1)*(-1+(i-1))*D11(2,3); 
M(j,j+2)=M(j,j+2)+1/2*%i*N(i,1)*(-1+(i-1))*D11(2,3); 
end 
end 
 
// exchange coupling - iron/ quinone (J1) 
 
  //diagonal (z) 
   
for i=1:5; 
j=1+2*(i-1); 
M(j,j)=M(j,j)-1/2*J11(3,3)*(-2+(i-1)); 
M(j+1,j+1)=M(j+1,j+1)+1/2*J11(3,3)*(-2+(i-1)); 
end 
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  //ansiotropic coupling 1 
   
for i=1:4; 
j=1+2*(i-1); 
M(j+3,j)=M(j+3,j)+1/4*N(i,1)*(J11(1,1)-J11(2,2)); 
M(j,j+3)=M(j,j+3)+1/4*N(i,1)*(J11(1,1)-J11(2,2));   
end 
 
  //anisotropic coupling 2 
 
for i=1:4; 
j=2+2*(i-1); 
M(j+1,j)=M(j+1,j)+1/4*N(i,1)*(J11(1,1)+J11(2,2)); 
M(j,j+1)=M(j,j+1)+1/4*N(i,1)*(J11(1,1)+J11(2,2));   
end 
   
  //anisotropic coupling 3 
   
for i=1:4; 
j=1+2*(i-1); 
M(j+3,j)=M(j+3,j)-%i*N(i,1)*1/2*J11(1,2); 
M(j,j+3)=M(j,j+3)+%i*N(i,1)*1/2*J11(1,2);   
end 
  
  //anisotropic coupling 4 
   
for i=1:4; 
j=1+2*(i-1); 
M(j+2,j)=M(j+2,j)-1/4*N(i,1)*(J11(1,3)-%i*J11(2,3)); 
M(j,j+2)=M(j,j+2)-1/4*N(i,1)*(J11(1,3)+%i*J11(2,3));   
M(j+3,j+1)=M(j+3,j+1)+1/4*N(i,1)*(J11(1,3)-%i*J11(2,3)); 
M(j+1,j+3)=M(j+1,j+3)+1/4*N(i,1)*(J11(1,3)+%i*J11(2,3));   
end 
 
   //anisotropic coupling 5 
   
for i=1:5; 
j=1+2*(i-1); 
M(j+1,j)=M(j+1,j)+1/2*(-2+(i-1))*(J11(1,3)-%i*J11(2,3)); 
M(j,j+1)=M(j,j+1)+1/2*(-2+(i-1))*(J11(1,3)+%i*J11(2,3)); 
end 
 
//diagonalisation/ eiganvalues/ intensity calculation 
 
M=full(M); 
 
Z=bdiag(M)*I2; 
 
[W,Z111]=spec(M); 
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Z1=gsort(real(Z),'r','i'); 
Z2=diag(Z1); 
 
U=(Z2*U2-U2*Z2); 
 
for c=1:10; 
 
[p1,F(:,c)]=linsolve((M-h*Z1(c,1)),u); 
 
totbolt=totbolt+exp(-(B*(Z2(c,c)-Z2(1,1))/(temp*kb))); 
totbolt1=totbolt1+exp(-(B*(Z2(c,c)-Z2(1,1))/(temp1*kb))); 
 
end 
 
F1=F'*R*F; 
F2=F'*S*F; 
 
if hi<1; 
 
else 
 
for cc=1:3; 
 
wd(cc,1)=((wx(cc,1)*J(3,1))^2+(wy(cc,1)*J(3,2))^2+(wz(cc,1)*J(3,3))^2)^0.5;    
 
c=2*(cc-1)+1; 
 
bolt=exp(-(B/(2.0837e10*P)*(Z2(c,c)-Z2(1,1)))/temp)/totbolt; 
bolt1=exp(-(B*(Z2(c,c)-Z2(1,1))/(temp1*kb)))/totbolt1; 
 
for d=c+1; 
 
if abs(U(d,c)-P*f/B)<HG/2*(P*f)/(B*H); 
 
V(d,c)=2*H-(U(d,c))*((B*H)/(P*f)); 
V1(d,c)=2*H-(U1(d,c))*((B*H)/(P*f)); 
 
wd1(cc,1)=abs((V(d,c)-V1(d,c))/(U(d,c)-U1(d,c))); 
 
T(:,cc)=T(:,cc)+bolt*((abs(F1(c,d)))^2+(abs(F2(c,d)))^2)*exp(-(((V(d,c)*I-
G)/(wd(cc,1)))^2))/wd(cc,1)*wd1(cc,1);  
Q(:,cc)=Q(:,cc)+bolt1*((abs(F1(c,d)))^2+(abs(F2(c,d)))^2)*exp(-(((V(d,c)*I-
G)/(wd(cc,1)))^2))/wd(cc,1)*wd1(cc,1);  
 
else 
 
end 
 
end 
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end 
end      
 
U1=U;       
    
end     
     
end 
 
end 
 
// Boltzmann distribution  
 
TT=sum(T,'c'); 
QQ=sum(Q,'c'); 
 
scf(20) 
 
delete("all") 
 
subplot(2,1,1) 
 
plot(G,T(:,1),'g') 
plot(G,T(:,2),'y') 
plot(G,T(:,3),'b') 
plot(G,TT,'r') 
 
subplot(2,1,2) 
 
plot(G,Q(:,1),'g') 
plot(G,Q(:,2),'y') 
plot(G,Q(:,3),'b') 
plot(G,QQ,'r') 
 
endfunction 
 
S9: Orientation Dependence of the Exchange/Fine Structure tensors 
 
The apparent re-orientation of the exchange and zero-field tensors seen in the simulation of 
the g~1.9 signal is explored in more detail below.  Here all unique orientations of the zero-
field tensor (D = 15, E/D = 0.27) relative to the exchange tensor were examined.  The 
exchange tensor was assumed to be axial as seen for the g~1.8 signal (JX = 0.13, JY = 0.58, JZ 
= 0.58).  Simply increasing the zero-field splitting (without rotation of the fine structure 
tensor relative to the exchange tensor) had little effect on the structure of the semi-quinone 
iron signal about the g~2 region.  In contrast, a large rotation (>60º) in xz plane resulted in 
the characteristic splitting of the central peak about g~1.8, now resolving two maxima at 
g~1.9 and g~1.7.  Rotation of the fine structure tensor in the xy plane did not yield a semi-
quinone iron signal similar to either the g~1.81 or g~1.9.  Rotation in the yz plane is invariant 
as the exchange tensor is axial; all b angles yield a simulation similar to Fig s9.1 tile 1.  



19/23 

 

 



20/23 

Figure s9.1: Tensor orientation dependence of the semi-quinone iron signal assuming a 
zero-field tensor (D = 15, E/D = 0.27) and axial exchange tensor (JX = 0.13, JY = 
0.58, JZ = 0.58) in the xz plane.  The orientation of the zero-field tensor relative 
to the exchange tensor is given in the corner of each individual tile.   

 

 
 
Figure s9.2: Tensor orientation dependence of the semi-quinone iron signal assuming a 

zero-field tensor (D = 15, E/D = 0.27) and axial exchange tensor (JX = 0.13, JY = 
0.58, JZ = 0.58) in the xyz quadrant.  The orientation of the zero-field tensor 
relative to the exchange tensor is given in the corner of each individual tile.   
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The orientation of the zero-field tensor for the 5 quinone-iron complexes as calculated by 
DFT follows a similar trend to that seen for the hyperfine tensor of the iron, as shown in Fig. 
7.  For both BRC and PS II where the 5th ligand is glutamate, formate or bicarbonate, the 
largest tensor component (in absolute magnitude and assigned to DZ), is directed towards QA

-

.  For BRC (+ glutamate or formate), the DY direction bisects the 5th ligand, whereas the DX 
is directed towards the axial histidine, defining a plane characterized by lower tensor values 
(in absolute magnitude). As seen for the hyperfine tensor, the orientation of the zero-field 
tensor does not dramatically change between BRC and PS II.  In PS II (+ formate or 
bicarbonate), the DX/DY plane still contains axial histidines and the 5th ligand but now DX 
points to the axial histidine and DY is directed towards one of the binding oxygens rather than 
carbon of the carboxyl group.  In contrast, for PSII (+ carbonate), DZ is now the smallest 
tensor component (in absolute magnitude) and is rotated into the membrane plane, pointing 
towards one of the axial histidines.  The DX/DY plane still contains 5th ligand (CO3

2-) but it 
now also contains the equatorial histidines with DX and DY components directed towards the 
binding nitrogens of the histidines.  As with the analysis of the hyperfine tensor above, the 
apparent interchange of the principal values of the zero-field tensor for PS II (+ carbonate) as 
compared to all other model systems is qualitatively similar to the change inferred from the 
ESR simulations discussed above. Here it was shown that the exchange tensor re-orientates 
relative to the fine-structure tensor for the simulation g~1.9 signal as compared to the 
simulation g~1.81 signal.   
 
S10: Orientation dependence of the g~1.9 signal 
The orientation dependence of the g~1.84 and g~1.9 semiquinone-iron signals has been 
previously determined (11).  It was shown that the turning point of the semiquinone-iron 
signal (for either g~1.84 or g~1.9) was maximal normal to the membrane plane.  The present 
analysis (and the analysis of Butler et al 1984) is compatible with these data.   
The orientation dependence of g-values is distributed over a relatively large field space in the 
xy or yz planes.  Only in the xz plane is the simulated spectrum narrow.  These features 
dominate the derivative EPR signal and are resolved in orientation studies (see Fig. s10). 
This result allows the assignment of the y axis (as yet arbitrarily defined) of the system.  It 
must be in a direction parallel to the membrane plane.  The coupling change (that occurs 
upon inter-conversion of the g~1.84 to g~1.9 signals) must then involve a change in the 
coupling environment generally within a plane perpendicular to the membrane.  This is 
consistent with the inferred coupling change between the g~1.84 and g~1.9 forms as 
determined by DFT.  
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Figure s10: The orientation dependence of the simulated g~1.84 (A) and g~1.9 (B) ESR 

absorbance signals.   Calculated spectra represent the two dimensional powder 
pattern for the either semi-quinone iron signals in the xz, yz and xy planes.   
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