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Cell wall expansion

Pollen tube elongation is due to stress induced expansion of its cell wall. Al-
though the physical relations between stress σ and viscoplastic deformation
rate ε̇ are firmly established, the precise role of the turgor pressure in the
growth regulation remains ill defined. Decreasing the turgor below a critical
level stops growth (1) and modulating the osmolarity induces variations in
the tube growth rate (2, 3). While expansion rate and stress variations can
be caused by many different factors such as cell wall thickness, extensibil-
ity and turgor, the viscoplastic expansion rate and stress in the plant cell
wall generally obey Lockhart’s equation ε̇ = Φ(σ − σy) (4–6). Here σy is
the yield stress and Φ is the cell wall extensibility. Consequently, we model
the cell wall expansion following a viscoplastic analysis based on Lockhart’s
equation (7).

The pollen tube cell wall is treated as a thin shell of viscoplastic mate-
rial (7). The pollen tube is assumed to have axial symmetry and to grow at
a steady rate. The growth is assumed to be orthogonal (8), meaning that a
marker particle placed on the cell wall moves in a direction normal to the
cell wall during growth. The turgor pressure inside the cell creates a tensile
stress in the cell wall, which as a result is deformed in a viscoplastic manner.
The expansion of the cell wall is described by the following stress-strain rate
relations characteristic of a viscoplastic material and previously published
by Dumais et al. (2006) (7)

ε̇i = Φ(σe − σy)
1
|H|

∂H

∂σi
, (1)

where Φ is the extensibility, H = σ2
e/2 the stored elastic energy and σe

and σy are the effective and constant yield stresses. When eq. 1 is written
explicitly in terms of s, n and θ, the strain rate components are given by

ε̇s = Φ(σe − σy)
(σs − νσθ

K

)
, (2)

ε̇θ = Φ(σe − σy)
(σθ − νσs

K

)
, (3)

ε̇n = Φ(σe − σy)
((ν − 1)(σs + σθ)

K

)
. (4)

The stress components are given by

σs =
p

2τκθ
, (5)
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σθ =
p

2τκθ

(κs

κθ

)
. (6)

Here, κs and κθ are the cell wall curvatures along the curvilinear coordi-
nates, τ is the cell wall thickness, and p the hydrostatic pressure. Since the
tube is axysymmetric, the curvature with respect to θ can be expressed in
terms of the curvature as a function of the position s along the arc of the
tube. The cell wall curvature and shape are calculated in two dimensions.
However, this shape contains all the information necessary to extract the 3-
dimensional shape. The strain rates can be written in terms of the velocity
vector component normal to tube, vn, and component tangential to the cell
wall, vt,

ε̇s = vnκs +
∂vt

∂s
, (7)

ε̇θ = vnκθ +
vt cos ϕ

r
, (8)

and
ε̇n = −(ε̇s + ε̇θ) +

R

τ
= 0. (9)

Here, R is the rate at which new material is deposited on the cell wall.
A simple algorithm for the shape of a cell growing according to the

viscoplastic model can be derived in the simple case of orthogonal growth,
i.e. when every point on the cell wall moves exclusively in a direction normal
to the cell wall such that vt = 0. One can define the strain rate anisotropy
λ(s) = (ε̇s − ε̇θ)/(ε̇s + ε̇θ). By substituting the equations for the strain rates
into this relation, one obtains

λ(s) =
(σθ − σs)(1 + ν)
(σθ + σs)(1− ν)

. (10)

By defining the stress anisotropy γ(s) = (σθ − σs)/(σθ + σs), eq. 10 yields

ν =
λ− γ

λ + γ
. (11)

Putting vt = 0 in eqs. 7,8 yields λ = (κθ − κs)/(κθ + κs) while substituting
eqs. 5,6 into eq.11 for the stress anisotropy yields

γ = (κθ − κs)/(3κθ + κs). (12)

Substituting eqs. 10,12 in terms of the principal curvatures into the eq.11,
the relation

κs = 1− 2ν(κθ) (13)
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is obtained. Since the pollen tube has axial symmetry, there is a second
direct relation between the two principal curvatures. Given a function ν(s),
the principal curvatures can be found be iterating the following three equa-
tions

ϕ(s) =
∫ s

0
κ(i)

s ds, (14)

κ
(i)
θ =

sinϕ

r
= sinϕ

( ∫ s

0
cos ϕ(s)ds

)
, (15)

κ(i+1)
s = 1− 2ν(κ(i)

θ ). (16)

During the iterations, denoted by the superscript i, the following boundary
conditions must be met. At the tip, or pole, of the tube, the two principal
curvatures must be equal thus ν(0) = 0. At the equator of the tube, kθ

must be constant along the shank (dκθ/ds|S=0) and κs = 0. These two
conditions are met by enforcing ϕ(S) = π/2 and ν(S) = 1/2. Once the
curvature κs is calculated along the arc position s, the cell wall can be
reconstructed. Finally, the curvatures κs and κθ are inserted into eqs. 5 and
6 for the different stresses. Fig. 2A in the main part of the manuscript shows
the shape of the cell wall during the steady viscoplastic growth that satisfy
Lockhart’s equation (eq. 1) and eq. 17.

Since the cell wall becomes thinner when stretched, vesicle deposition
supplies the material necessary to maintain a constant thickness during the
continuous elongation of the cell. The net rate R at which the vesicles fuse
with the membrane (Fig. 2B in the main part of the manuscript) is assumed
to be such that the thickness of the cell wall stays constant and the normal
strain rate εn = 0 (7). This is expressed by

ε̇n = −ε̇s − ε̇θ +
R

τ
= 0, (17)

where τ is the thickness of the cell wall and the εi denote the strain rates
in the curvilinear coordinates. The average net fusion rate can be es-
timated from measured quantities (9). Multiplying the average number
of vesicles per minute needed to sustain a typical growth of 7µm/min
(NV = 3939min−1) by the average vesicle volume (Vol = 0.0026µm3) and di-
viding by the total apex surface (SA = 415µm2) yields an average net fusion
rate R = 0.0244µm/min. Furthermore, in order to achieve steady growth,
the turgor pressure and the rheological parameters such as the extensibility
Φ must remain constant. While the precise location of the exocytosis ac-
tivity at the apex remains a subject of debate (10–13), a comparison of its
average value (calculated above) with the average vesicle flux at the fringe
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(see main part of the manuscript) supports the claim that the vesicle flux
pattern is only marginally affected by the localisation of this activity. While
we use a consistent model (eq. 17) for this process, our results do not depend
on this particular model of the average vesicle secretion rate.

Actin microfilament orientation

The spatial distribution and orientation of actin microfilaments is very dis-
tinct in the shank and apical fringe of the pollen tube. Long parallel, rela-
tively thick bundles of F-actin occur along the shank of the pollen tube (14–
17)1. However, in the region bordering the apical cone, actin forms a dense
network of less bundled filaments (16, 18–20). This region of the actin cy-
toskeleton is called the apical fringe. The formation and stability of the
fringe as well as the filament orientation can be studied with a statistical
model of actin filament aggregation (21–26). The actin filaments in the
pollen tube can be classified into two distinct groups: the filaments bound
to the stable array and those free to move in the cytoplasm. Free actin
filaments aggregate and diffuse rotationally and translationally until they
bind to the network filaments. Network filaments cannot diffuse but they
aggregate and re-orient into bundles of common orientation. This can be
expressed with the following reaction-diffusion model (24). We fix our co-
ordinate system such that the tube grows toward the positive y-direction,
and will model the change in orientation and density of the actin filaments
along the x-direction using

∂N(x,Θ, t)
∂t

= β1FK ∗ F + β2NK ∗ F − γN, (18)

∂F (x,Θ, t)
∂t

= −β1FK ∗N − β2FK ∗ F + γN + µ1
∂2F

∂Θ2
+ µ2

∂2F

∂x2.

Here N(x,Θ, t) and F (x,Θ, t) represent the network and free filaments den-
sities. Θ is the orientation of the filaments, i.e. the angle between the fil-
aments’ barbed ends and the x-axis. β1 and β2 are the association rates,
γ the dissociation rate and µ1, µ2 the rotational and translational diffu-
sion coefficients. We use the following values in the numerical simulations
(β1, β2, γ, µ1, µ2)=(0.5,0.5,0.1,1.0,0.5). The binding of filaments occurs at a
rate that depends on relative configuration and is described by the convolu-

1Unless specified otherwise, all numbers refer to equations,figures or the bibliography
of the Supporting material section
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tion terms of the form K ∗ F (26) where

K ∗ F =
∫ π

−π

∫
Ω

K(Θ−Θ′, x− x′)F (Θ′, x′)dΘdx. (19)

The kernel K = K1(x)K2(Θ) was introduced to model the re-orientation of
actin filaments due to the action of cross-linking proteins (21). We use

K2(Θ) = 0.4 if
π

2
− < |Θ−Θ′| < π

2,
(20)

and else
K2(Θ) = 0. (21)

The spatial dependence of the kernel is K1(x) = exp(−(x/20)2). Our analy-
sis is simplified by the assumption that the free filaments at the tip recently
joined the network whereas the filaments in the distal region of the shank
have spent a certain amount of time re-arranging and bundling. Accord-
ingly, the state of the filament population at the tip of the apex is well
represented by the solution of eqs. 19 at early times. The state of the fil-
ament population in the shank is described by the solution at late times,
when N(x,Θ, t) and F (x,Θ, t) have reached their equilibrium configura-
tion. This assumption allows us to ignore the y variable. In other words,
we assume that the change in time of eqs. 19 describe the change along
the y-axis of the pollen tube. The state of the filament population at the
fringe is thus described by the solution of eqs. 19 at intermediate times.
We set the initial distribution of network filaments to be N(x,Θ, t = 0) =
exp(−0.1(x2 + (Θ + π/2)2)) + exp(−0.1((x − L)2 + (Θ − π/2)2)) + ξ and
F (x,Θ, t = 0) = ξ where ξ is a random variable that is uniformly dis-
tributed around a positive mean. These initial conditions and the model are
chosen such that the filament population at late stages adopts the configu-
ration observed in the pollen tube shank (27). The filaments in the shank
form bundles in two regions: the centre (x=0) and the cytoplasmic cortex
(x=L). This is equivalent to a filament distribution presenting one density
peak in the centre (x=0) and one density peak at the periphery (x=L). It
is known (27) that the bundle in the centre of the shank is composed of
filaments with barbed ends pointing toward the back (Θ = −π/2), while
the bundles at the periphery are composed of filaments with barbed ends
pointing towards the front (Θ = π/2).

From Fig. 1, we see that the filament density profile along the fringe is
uniform, unlike it is in the shank described above. Also, the fraction of the
filament population attached to the network is greater than in the apex but
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smaller than in the shank. Thus, the state of the filament population in the
fringe is described by the solution of eqs. 19 at a time characterised by a
sudden increase in the total network filament population and by a rather uni-
form density profile along the x-direction (Fig. 1A). Fig. 1 shows the solution
of eqs 19. From Fig. 1C, we set the time at which eqs. 19 describe the fringe
to be ti = 10000∆t. At this time, the average network filament orientation
Θ(x) along the x-direction is evaluated by Θ(x) = 1

C

∫ L
0 ΘN(x,Θ, ti)dΘ

where C is a normalisation constant. The numerical solution (Fig. 1B) at
t = 10000∆t can be fitted to the linear orientation profile

Θ(x) =
−π

L
x− π

2
. (22)

From now on, we will drop the bar and refer to the average filament orien-
tation along the fringe as simply Θ(x). The orientation profile could also
be fitted to a sigmoid function which would yield a sharper fringe shape,
as calculated in the section Profile of the actin fringe. The physical prin-
ciple that allows to interpret this gradual change in filament orientation
is a local elastic interaction between filaments. This elastic interaction re-
orients the filaments in order to minimise the local elastic stress caused by
mismatched orientation between neighbouring filaments. It is thus not sur-
prising that eq. 22 satisfies the laws of elastic polymer networks. Given the
simplified case of an elastically isotropic polymer network, the stress energy
is E = ∇2Θ (28). Eq. 22 is a solution that minimises this stress.
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Figure 1: Dynamic aggregating and re-orientation of the actin filaments. For
(A) and (B) the thick full line represents the solution at t = 4∆t, the dashed
line represents t = 10000∆t and the dotted line represents t = 20000∆t. (A)
Total density of network filaments

∫
NdΘ along the the fringe (x-direction)

at three different times. (B) Average filament orientation profile along the
x-direction at three different times. The thin full line is a linear fit to the
orientation profile. (C) Total density of network filaments

∫ ∫
NdΘdx as a

function of time. The steepest increase is found at a time of t = 10000∆t.
We identify the configuration of the filament population at this time with
the configuration in the fringe.
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Surface tension at the tail of the cone

At the tail of the apical cone, the two halves of the profile shown in Fig. 2C
in the main part of the manuscript must join at a very acute angle. At that
position, the curvature of the profile is very large and the surface tension
γ between the actin fringe and the cytoplasm leads to capillary effects that
cannot be neglected. Since the profile is parallel to the actin microfilaments,
eq. 3 (in the main part of the manuscript) predicts that the normal profile
velocity is zero at that location. That means that the tail of the clear
zone becomes thinner and longer as the pollen tube grows, leading to an
even sharper profile at its tail. The surface tension reduces the sharpness
of the profile by increasing the protrusion rate as a function of the profile
curvature. The pressure difference ∆p = γK generated at the profile is
given by the Gibbs-Thompson relation (29). Here K is the curvature given
by K = y′′

|1+y′2|3/2 . This pressure difference acts as an effective increase in
the local G-actin concentration to increase polymerisation. We approximate
this effect by adding a term, valid only in regions of high curvature, to the
profile velocity eq. 3 in the main part of the manuscript

dr

dt
= vMF (n · r) +

konγK

kbT
, (23)

where kBT is the energy of the thermal fluctuations. Since the microfil-
aments are oriented parallel to the profile at the end of the tail, the first
term in the previous expression is negligible. Assuming that the end of the
tail advances at the same rate vp as the whole profile yields the equality
konγK = vp. Expressing K = 1/L where L is the radius of curvature at
the end of the tail, and kon = vMF /G ' vp/G, yields the chemical capil-
lary length L ' γ

GkBT . We estimate the order of magnitude of the capillary
length to be L ' 1.5µm from the width of the apical cone in Fig. 1F in
the main part of the manuscript. For G ' 10µM (30), the surface tension
is of the order of 4 × 10−5J/m2. The condition that the curvature K is a
constant at the end of the tail is met by a profile in the shape of a half circle

y =
(
L2 − x2

)1/2
. (24)

The contribution of the surface tension is visible at the funnel end of the
actin fringe, where the two symmetric halves of the profile meet and where
its curvature is maximal. The full profile is shown in the inset of Fig. 2C in
the main part of the manuscript.
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Figure 2: (A) Vesicle density in an angiosperm pollen tube without vesicle
secretion. The growth rate and the parameter R are zero but the vesicle
retrieval and delivery at the fringe is maintained. (B) Vesicle flux in the
same pollen tube.

Effect of arrest of pollen tube growth on vesicle streaming
patterns

Vidali et al. (14) used biochemical (profilin and DNAse) and pharmacological
agents (latrunculin B and cytochalasin D) to perturb actin microfilament
polymerisation and structure in growing pollen tubes. They found that
these actin polymerisation inhibitors have a much stronger effect on pollen
tube growth than on cytoplasmic streaming, i.e. that the concentration of
inhibitor needed to stop streaming is much higher than that required to
stop growth. To imitate the arrest of pollen tube growth, we set the values
for R=0 for all positions along the cell wall and set the advancement and
protrusion rate of the fringe to zero. The resulting vesicle movement patterns
and density distribution (Fig. 2) are not significantly different from the
normally growing tube (Fig. 4. in the main part of the manuscript).
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Therefore, according to our model, inhibiting the polymerisation process
while maintaining the acto-myosin mediated vesicle transport would not
alter the vesicle flux pattern significantly as long as the shape of the clear
zone remains the same. In the same way, an inhibition of vesicle secretion
at the plasma membrane would not disrupt the vesicle flux pattern but only
disrupt cell wall elongation and thus pollen tube growth. This behaviour
was observed upon inhibition of Rho-GTPases (31). The treatment blocks
vesicle exocytosis while maintaining the cytoplasmic streaming. Essentially,
our model explains how the vesicle flux pattern is maintained as long as the
orientation of the microfilaments and the funnel shape of the clear zone are
maintained, even if the rates of actin polymerisation or pollen tube growth
are affected.

Pollen culture, fluorescent label and image acquisition

This section explains the experimental methods and techniques used to ob-
tain the pollen tube micrographs shown in Fig. 1 of the main article.
Actin label
After two hours of growth, pollen tubes were fixed for 40 seconds in 3%
formaldehyde, 0.5% glutaraldehyde and 0.05% Triton X-100 solution in a
buffer composed of 100 mM PIPES, 5 mM MgSO4 and 0.5 mM CaCl2 at
pH 9. Pollen tubes were then washed 3 times for one minute each in the same
buffer followed by an incubation overnight at 4oC in rhodmine phalloidin
(Molecular Probes) diluted (1:30) in a buffer composed of 100 mM PIPES, 5
mM MgSO4, 0.5 mM CaCl2 and 10 mM EGTA at pH 7. Subsequently, the
pollen was washed 5 times for one minute each in the same buffer, mounted
on glass slides in a drop of citifluor (Electron Microscopy Sciences), covered
with a cover slip, sealed and immediately observed with a Zeiss Imager-Z1
microscope equipped for structured illumination microscopy (apotome) and
with a Zeiss AxioCam MRm camera. A filter set of BP 546/12 excitation,
FT 560 beamsplitter and BP 575-640 was used. All fixation and washing
steps were conducted in a PELCO cold spot biowave 34700 at 150 Watts
and 26oC.
Vesicle label
Vesicles in living pollen tubes were labelled by adding 160 nM of the lipophilic
styryl dye FM1-43 (Molecular Probes, Invitrogen) to the growth medium for
five minutes. Then pollen was filtered and mounted in fresh growth medium
between slide and coverslip for microscopic observations with a Zeiss LSM
510 META / LSM 5 LIVE / Axiovert 200M system. A 488 nm argon laser
was used with an emission filter LP 575. Z-Stacks of 1 µm interval were
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taken and image reconstruction and surface rendering were performed using
AxioVision Release 4.5 software.
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