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Supplementary Figure 1: A selection of random SNPs genotyped by Birdseed on chromosome 5
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Supplementary Figure 2

Performance of BRLMM and Birdseed on 63 250K-Nsp HapMap samples.
The 63 samples were normalized together to create a single matrix of intensities (with 500K rows 
corresponding to the 250K Nsp SNPs on the array, with one for each of allele A and allele B, and with 
63 columns corresponding to the 63 sampels).  This matrix was then used as input to BRLMM (green) 
and Birdseed (blue).  Birdseed shows significant improvement over BRLMM at capturing minor allele 
homozygotes in both call rate (a sample that was called a minor homozygote in HapMap was more 
likely to have a call that passes the confidence threshold in Birdseed than it was in BRLMM) as well as 
in concordance (a sample called a minor homozygote in HapMap was more likely to be called incor-
rectly in BRLMM than it was in Birdseed (only those calls passing the confidence threshold are 
considered).  Both algorithms perform more poorly at calling rarely seen genotypes than they do at 
calling common genotypes, for both the homozygous and heterozygous calls.



Supplementary Table 1 
 
In Silico Gender Mixing Results 

Simulated 
deletion size 

Percent 
simulated 
deletions 

discovered 
with 

LOD > 0 

Mean LOD Percent 
simulated 
deletions 

discovered 
with LOD > 1 

Percent 
simulated 
deletions 

discovered 
with LOD > 2 

Percent 
simulated 
deletions 

discovered 
with LOD > 5 

Percent of 
those 

discovered 
with 

breakpoint 
tolerance of 1 
probe for 3- 
and 5-probe 
deletions, 
within 2 

probes for 10-
. 20-, and 50- 

probe 
deletions 

3 38% 1.38 20% 10% 0.2% 96% 
5 79% 3.12 66% 51% 15% 93% 
10 99.5% 9.29 98.5% 97.5% 87% 99% 
20 100% 22.32 100% 100% 99.5% 94% 
50 100% 53.55 100% 100% 100% 93% 
* The simulation covered 101,920,000 unvaried probes, approximately 56.6 genome’s 
worth of data.  There were 14 false positive duplications and 1 false positive deletion (<1 
per genome) discovered with LOD > 2 (the highest false positive LOD observed was 
3.01).  There were an additional 106 (approximately 2 per genome) with LOD between 1 
and 2, and 929 (approximately 16 per genome) with LOD between 0 and 1.  The majority 
(75%) of these latter category were 5 or fewer probes in length.  The false discoveries 
had an average LOD of 0.44. 



Frequency SNP-only model Combined SNP and CNP models
CNV event (B and BB/-) Effect model SNP2 SNP SNP | CNP CNV CNV | SNP SNP & CNP

Deletions 0.25 I. {A,B} > { - } 0.05 0.10 0.05 0.97 0.97 0.94
II. { A } > { B, - } 0.89 0.98 0.95 0.73 0.47 0.99
III. { A, - } > { B } 0.88 0.92 0.95 0.24 0.47 0.94
IV. { A } > { B } > { - } 0.36 0.66 0.45 0.90 0.82 0.92

0.05 I. {A,B} > { - } 0.05 0.13 0.05 0.50 0.43 0.40
II. { A } > { B, - } 0.47 0.72 0.49 0.45 0.14 0.66
III. { A, - } > { B } 0.47 0.41 0.49 0.05 0.14 0.40
IV. { A } > { B } > { - } 0.16 0.39 0.16 0.47 0.27 0.46

Duplications 0.25 I. {A,B} > { BB } 0.60 0.85 0.05 0.97 0.68 0.94
II. { A } > { B, BB } 0.99 0.99 0.96 0.73 0.22 0.99
III. { A, BB } > { B } 0.61 0.25 0.96 0.24 0.96 0.95
IV. { A } > { B } > { BB } 0.92 0.95 0.45 0.89 0.09 0.92

0.05 I. {A,B} > { BB } 0.06 0.36 0.05 0.50 0.19 0.39
II. { A } > { B, BB } 0.57 0.75 0.49 0.45 0.08 0.66
III. { A, BB } > { B } 0.44 0.18 0.49 0.05 0.38 0.40
IV. { A } > { B } > { BB } 0.25 0.56 0.17 0.48 0.06 0.47

    Supplementary Table 2. Simulation study results. Power for 5% type I error, based on 10,000 replicates. 
    A quantitative trait was simulated and an effect of a single SNP simulated (alleles A, B) with either a deletion (-) or duplication (BB).
    The exact effect size of combined SNP and CNV effects varies by condition, but is typically on the order 
        of 1% of total phenotypic variance.
    See next page for more information concerning the simulation and interpretation of this table.



 
To evaluate the performance of the combined SNP and CNP association model, we performed a simulation study, reported in Supplmentary Table 
2. Simulating a single copy-number variant SNP for a sample of 1,000 individuals (10,000 replicates per condition), we considered four effect 
models (I-IV in Supplementary Table 2) for both common deletions (A, B, -) and duplications (A, B, BB); in addition, the frequency of the B allele 
and the deletion or duplication was fixed at either 25% or 5% each (and so the A allele was either 50% or 90%). In all cases the outcome variable 
was a quantitative trait. We also considered null model simulations (with no effect of either SNP or CNP on phenotype). The combined effect of 
both SNP and CNP varies across conditions but is typically on the order of 1% of the total phenotypic variance. 
 
We evaluated the performance of six distinct tests under these 16 conditions. The first five tests are based on the true set of canonical and non-
canonical genotype data, jointly representing both copy number and allelic variation, via the model introduced above:  
 
 CNP | SNP Test of copy number controlling for allelic variation 
 SNP | CNV  Test of allelic variation controlling for copy number 
 SNP & CNP  Joint 2df test of copy number and allelic variation 
 SNP  Test only of allelic variation but using non-canonical genotypes 
 CNV  Test only of copy number variation 
 
Aside from the joint test, all tests are 1df tests. The first three tests correspond to those outlined in the main text; the fourth and fifth are based on 
entering only the difference of the allele counts (SNP) or only the sum (CNV). 
 
The sixth test is designed to approximate the performance of a "traditional" SNP genotype calling and analysis pipeline, considering only SNP 
effects and assuming canonical genotype data. For this test, homozygous deletions and allelically-heterozygous duplications (i.e. A/BB) were set to 
missing; single deletions and allelically-homozygous duplications were called as two-copy homozygotes (e.g. B/- and B/BB were called B/B). This 
test is labeled SNP2, indicating the assumption of diploid state. It is important to note that the genotyping “error model” specified here is somewhat 
optimistic: in practice one might expect increased rates of missing and incorrectly-called genotypes, further deteriorating the performance of SNP2. 
 
Under the null, all tests under all conditions gave appropriate type I error rates of 5% (data not shown). The full pattern of results under the alternate 
(Supplmentary Table 2) represents a number of complex factors: power is influenced by the relative frequencies of events and alleles, whether the 
CNPs are deletions or duplications as well as which allele is duplicated, the in silico genotyping error model implicit in the SNP2 test and the 
assumption of additivity across potentially 0 to 4 copies of an allele. Here we only focus on the most relevant key features. 
 
In general, the new combined 2df test (SNP & CNP) performs well and is more powerful than the standard SNP2 test, sometimes substantially more 
so. Similarly, the non-conditional tests framed within the combined model (SNP and CNP) perform well; perhaps of more interest is the 
performance of the conditional tests, that ask whether there is any effect of allele over and above that of copy number and vice versa. To illustrate 
the way in which the joint model’s conditional tests can disentangle SNP and CNP effects, consider the 9th row of Supplmentary Table 2, in which a 
common duplication BB has an effect relative to alleles A and B. That is, although the duplication is causal (and other SNPs in the same CNP might 
also be causal) this particular SNP has no influence on phenotype over and above the CNP. The standard SNP2 test has 60% power in this case, 
arising from the correlation between the duplication and the B allele; the joint 2df test is more powerful however, giving 94% power in this 
scenario. More importantly, the test of SNP | CNP has only 5% power, which is the expected rate under the null given the 5% type I error rate 
specified. In contrast, the test of CNP | SNP has 68% power. In other words, in this new model would tend to a) be more likely to locate this locus 
in the first place and b) be able to show that this particular SNP is not associated with phenotype once the duplication has been taken into account. 
 



Supplementary Note: Sensitivity of Birdsuite, and comparison to other algorithms 
 
We evaluated the ability of three algorithms—Birdsuite, Nexus, and Partek—to identify a 
set of 893 independently discovered and validated CNVs.  These reference CNVs had 
been identified in eight of the HapMap samples by fosmid end-sequence-pair (ESP) 
analysis and localized by complete resequencing or 200bp-resolution array CGH (from 
Kidd et al., 2008, Supplementary Table 3). 
 
We used the same CEL files (representing hybridization of 263 HapMap samples to the 
Affymetrix SNP 6.0 array) as input to each algorithm.  Sensitivity was judged based on 
ability to recover the reference CNVs from Kidd et al.  A reference CNV was determined 
to be “recovered” if the algorithm called a CNV in the same sample and at the same 
genomic location as the reference CNV.  To determine whether the same locations had 
been identified, we used the criterion that the genomic region in the overlap of the 
reference and called CNV had to be at least 25% of the length of the region spanned by 
the reference and called CNV together. 
 
We report results for Birdsuite (using Canary calls with an uncertainty < 0.1 together 
with Birdseye calls with a LOD score > 5), Partek (using default parameters; see below), 
Nexus (using default settings; see below), and Nexus with relaxed settings (see below).  
Since sensitivity to discover a CNV is strongly related to the number of probes spanned 
by that CNV, the analysis below is stratified on the number of probes on the Affymetrix 
SNP 6.0 array overlapped by each of the reference CNVs.  Results are reported both in 
terms of absolute number (top) as well as in terms of percentage (bottom) of the reference 
CNVs recovered. 
 

Sensitivity to 
recover CNVs from 

Kidd et al.  Birdsuite Partek Nexus 
Nexus 

(relaxed) 
Probes spanned by 

CNV 
Total in 

Category 
1344 

 
2164 

 
573 

 
2474 

 
<= 1 probes 325 12 4 2 4 
2-5 probes 256 84 1 2 14 
6-10 probes 112 69 2 15 47 

11-20 probes 71 46 3 34 49 
> 20 probes 129 121 15 94 96 

      
Probes spanned by 

CNV 
Total in 

Category Birdsuite Partek Nexus 
Nexus 

(relaxed) 
<= 1 probes 325 3.7% 1.2% 0.6% 1.2% 
2-5 probes 256 32.8% 0.4% 0.8% 5.5% 
6-10 probes 112 61.6% 1.8% 13.4% 42.0% 

11-20 probes 71 64.8% 4.2% 47.9% 69.0% 
> 20 probes 129 93.8% 11.6% 72.9% 74.4% 

 
As expected, the sensitivity of all algorithms was poor when the number of probes 
spanned by a CNV was small.  For all algorithms, sensitivity increased with the number 
of probes spanned by the CNV. 



Of course, the greater sensitivity observed for Birdsuite could in principle be due to the 
use of more-relaxed calling thresholds.  We do not believe this to be the case, because 
Birdsuite appeared to be more stringent than Partek with default settings (1344 CNVs 
called vs. 2164) and than Nexus with relaxed settings (1344 CNVs called vs. 2474).  
Thus, despite having called fewer total segments as copy-number variable (than Partek 
and Nexus) using the settings above, Birdsuite identified more of the CNVs that were 
discovered independently by a sequencing-based approach.  Additionally, while 
specificity is difficult to judge without attempting to experimentally validate a large 
number of new calls from each algorithm, we have demonstracted high specificity for 
Birdsuite calls by using reproducibility of copy number calls, comparison to quantiative 
PCR data, Mendelian inheritance checks, and simulated datasets. 
 
The following Venn diagram shows sensitivity of Birdsuite and Nexus to those reference 
CNVs overlapping at least 6 probes on the Affymetrix 6.0.  In addition to Birdsuite being 
more sensitive at default thresholds, relaxing the thresholds of Nexus recovers only 
moderately more reference CNVs (as well as more overlaps with Birdsuite CNVs), but at 
many times the total number of called CNVs.  While Birdsuite has many called CNVs 
that are not in the reference dataset, most of these are due to the common CNPs whose 
accuracy has been demonstrated (McCarroll et al., accompanying paper), and whose size 
is often below the threshold detectable by fosmid-end sequencing. 
 

 

Birdsuite
Birdsuite Kidd > 5 

probes Kidd > 5 
probes 

Nexus 
(relaxed parameters) 

Nexus

 
These results demonstrate the importance of parsing CNVs into rare/undiscovered and 
common/known categories for analysis.  This is particularly true for small events: by 
utilizing prior knowledge (the CNP map from McCarroll et al.) to genotype common 
CNPs, we can not only confidently detect and genotype more than 30% of events 
overlapping only 2-5 probes (a size typically insufficient to confidently discover CNVs 
ab initio), but also a higher percentage of large CNVs that may be difficult to detect 
because of decreased probe sensitivity (e.g. many are in segmental duplications, where 



cross-hybridization leads to vastly different probe characteristics, interfering with ab 
initio algorithms).  This division of structural variation into known/common and 
undiscovered/rare components also allows an algorithm such as Birdsuite to detect 
undiscovered/rare CNVs at more stringent thresholds without compromising the ability to 
genotype known/common CNPs. 
 
Partek Parameters: 
Segmentation Parameters:  Minimum probesets = 10; P value = 0.001; signal to noise = 0.3 
Region Report: Below = 1.7; Above = 2.3; P value = 0.01 
 
Nexus Parameters: 
Threshold setting; P value cut off = 0.05; Aggregate % cut off = 35; Min number of probes per segment = 5 
High gain = 0.5; Gain = 0.2 ; Loss = -0.3; Big Loss = -0.7 
 
Nexus Relaxed Parameters: 
Rank Segmentation; Significant threshold = 0.0001; Max contiguous probe spacing(kbp) = 1000; Min 
number of probes per segment = 5 
High gain = 0.5; Gain = 0.2 ; Loss = -0.3; Big Loss = -0.7 
 
References: 
Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 

56-64 (2008). 
McCarroll, S.A., et al.  Integrated detection and population genetic analysis of SNPs and copy number 

variation.  Nature Genetics, accompanying paper. 
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Canary: Algorithm 
Overview 

Canary's function is to genotype samples in regions of known copy-number variation, 
especially suited for regions of common variation. 

Inputs 
Summarized (median polish) intensities from a set of .cel files across a set of predefined 
probes in an external map. 

A models file which contains the means, variances, and proportions of discrete genotype 
classes observed in those same regions.  (The intensity data for this paper was taken from 
an average of two independent runs of the HapMap samples, one at Affymetrix, Inc. and 
the second at the Broad Institute of Harvard and MIT.) 

Description of algorithm 
Canary is a 1d Gaussian Mixture Model (GMM) to cluster samples into discrete copy 
number classes. 

Initialization: 
The initial conditions for each cluster are specified in a prior models file that contains 
CNP-specific estimates of cluster locations and variances (in terms of summarized and 
scaled intensity values) learned from samples of known genotype; a series of models are 
tested consisting of different number and combination of genotype clusters (since not all 
potential copy number levels are necessarily represented in the given dataset). 
The following series of models is tested depending on parameters and CNP information, 
where use_af refers to a boolean parameter that when true, restricts the search space to 
only include alleles previously observed at that CNP. 
 I. If limiting to alleles observed in samples used to generate the models file, 
examine whether or not the models record the existence of a deletion only (i.e. 0 
frequency for clusters at copy number 3 and 4.)  If so, the following models are tested: 
[0], [2], [0,1], [1,2], and [0,1,2].  Similarly, if the CNP records a duplication only, these 
models are tested: [2], [4], [2, 3], [3, 4], [2,3,4]. 
 II. If not limiting to alleles observed in samples used to generate the models file, 
or if the models record both a deletion and a duplication at the CNP, then the following 
models are tested: [0], [2], [4], [0,1], [1,2], [2,3], [3,4], [0,1,2], [1,2,3], [2,3,4], [0,1,2,3], 
[1,2,3,4], and [0,1,2,3,4]. 

For a given initialization of G gaussian clusters and N samples, cluster parameters are 
updated via a modified Expectation-Maximization (EM) algorithm, iteratively estimating 
cluster membership (E-step) and maximizing cluster parameters (M-step) (Dempster, 
1977). 

E-Step: 
Standard posterior assignment probabilities are computed for each sample i (with 
intensity xi) and cluster j (with mean μj, standard deviation σj, and frequency wj) pair. 
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P(j | i) = K * (wj / σj ) * exp( -(xi - μj)2 / (2σ2
j) )    (1) 

where K is a normalization constant set such that (Σj=1 to G P(j | i)) = 1.  P(j | i) reflects the 
relative probability sample i was drawn from the normal distribution j compared to the 
other Gaussians. 

M-Step: 
The parameters of each cluster are updated based on current cluster membership.  Typical 
M-Step updates are modified to include s pseudopoints placed at the prior model’s mean 
μpj for each cluster j, and to regularize the variances toward a common shared term. 

wj = (Σi=1 to N P(j | i)) / N       (2) 

μj = [((1 / (s + wj)) * Σi=1 to N (P(j | i) * xi))] + [(s / (s + wj)) * μpj]  (3) 

σj
2 = (1 / wj) * Σi=1 to N (P(j | i) * (xi - μj)2)     (4) 

After all clusters have been updated, the variance terms are regularized to be similar to 
each other: 

Expected variance σavg
2 = (1 / G) * Σj=1 to G (σj

2)    (5) 

σj
2 = (1 / (1 + r)) * σj

2 + (r / (1 + r)) * σavg
2     (6) 

 
where r is the regularization parameter. 
EM is iterated for at least a minimum number of iterations until convergence (or a 
maximum number of iterations is reached), at which time the next model is tried. 

Model Selection: 
A series of heuristics are used to determine which GMM model is best (in addition to the 
relative probability of observing the data given the EM-fit model). 

1. Bayesian Information Criterion (BIC): 2 * log-likelihood - G * log(n) 
2. reward_closeness: how close the means of the fit data are to the prior model for 

that CNV 
3. af: The difference in allele frequency of the fit data with that CNV prior model 
4. hwe_penalty: a Hardy-Weinberg penalty 
5. overlap: A penalty which describes how much the peaks of the fit data overlap 

each other 
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Genotyping: 
Using the selected model, each sample i is genotyped as the copy number of the cluster j 
which maximizes the equation 

 P(j | i) = (wj / σj ) * exp( -(xi - μj)2 / (2σ2
j) )     (7) 

Samples are furthermore assigned a confidence reflecting the relative likelihood of 
belonging to the next-best cluster (a global confidence), as well as a local confidence 
reflecting their absolute probability.  This local confidence is computed as a sigmoidal 
function of the number of standard deviations away from the cluster center a sample lies. 
To compute the global confidence score: 

 confglobal-i = P(jsecond-best | i) / P(jbest | i)      (8) 
 
To compute the local confidence score: 
 

qi = sqrt((xi - μj)2 * (1 / σ2
j) / 2 )      (9) 

conflocal-i = 1/(1 + exp(p – qi)) - 1/(1 + exp(p))    (10) 

where q is the number of standard deviations a sample is from its assigned cluster, and p 
is the number of standard deviations beyond which the local confidence score quickly 
increases (the inflection point in Eq. (10)). 
 
The overall confidence score is then: 

(c * confglobal-i) + ((1 - c) * conflocal-i)      (11) 

where c is the relative confidence contribution parameter,  0 <= c <= 1.
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Canary: Manual & Pseudocode 
Overview 
Canary's function is to genotype samples in regions of known copy-number variation, 
especially suited for regions of common variation. 

Inputs 
Summarized (median polish) intensities from a set of .cel files across a set of predefined 
probes in an external map. 

A models file which contains the means, variances, and proportions of discrete genotype 
classes observed in those same regions.  (The intensity data for this paper was taken from 
an average of two independent runs of the HapMap samples, one at Affymetrix, Inc. and 
the second at the Broad Institute of Harvard and MIT. 

Outputs 
Genotypes: 0, 1, 2, 3, and 4 at each predefined CNV in each sample, along with a 
confidence score ranging from 0 (most confident) to 1 (least confident) 

Below is a pseudocode sketch of the algorithm.  All code is open-source and can be downloaded 
free of charge from www.broad.mit.edu/mpg/birdsuite.  For additional detail, see the actual 
source code. 

There are a variety of flags and constants that can be adjusted according to the user's 
preference. 
n: number of samples being clustered 
use_af: Boolean flag on whether or not to draw on the allele frequency (af) estimates 
from the models file (default is True) 
min_iter: the minimum number of times to execute the EM loop (set at 10) 
var_reg: how much to regularize the variances (0 not at all, 1 fully) (r in Eq. (6)) 
pseudopoint_factor: how much to "anchor" the EM algorithm to the model locations 
(smaller is more weight, default is 100) (n divided by s from Eq. (3)) 
af_weight: how much to use allele frequency in the scoring of models (0 not at all, 1 
fully) 
hwe_weight: how much to use hwe in the scoring of models (0 not at all, 1 fully) 
hwe_tol: if a non-zero hwe weight, below this start to penalize (set at 1e-4) 
hwe_tol2: if a non-zero hwe weight, below this start to penalize (set at 1e-11) 
rel_confidence_weight: a constant from 0 to 1 which determines how much to weight 
global penalties to local penalties (set to 0.8) (c in Eq. (11)) 
trailoff_par: reflects how much to penalize points in the confidence score regarding 
distance from its closest peak (set at 3) (p in Eq. (10)) 

I. If use_af is True, examine whether or not the models record the existence of clusters at 
3 and 4.  If not, store into a variable clustering_set to test the following models: [0], [2], 
[0,1], [1,2], and [0,1,2].  If there are no clusters are 0 or 1, then store into clustering_set 
the following models: [2], [4], [2, 3], [3, 4], [2,3,4]. 
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II. If use_af is False, or if it is True and there are clusters at [0 or 1] and [3 or 4], then 
store into clustering_set to test the following models: [0], [2], [4], [0,1], [1,2], [2,3], [3,4], 
[0,1,2], [1,2,3], [2,3,4], [0,1,2,3], [1,2,3,4], and [0,1,2,3,4]. 

III. Invoke an Expectation-Maximization algorithm on each of the models in 
clustering_set, storing the clustering results derived from each of the configurations 
testing in clustering_set.  The algorithm is a standard EM with the following exceptions: 

1. After the M step, the variances are regularized to the mean of the variances by a 
factor var_reg (typically set to something like 0.4). 

2. A number of pseudopoints are placed at the cluster center locations (derived from 
the models file).  The number of points is: max(1,floor(n/pseudopoint_factor)). 

3. The EM algorithm is forced to run at least min_iter times. 

IV. Determine how well each of the cluster configurations after EM fits the data and the 
models.  The components that weigh into assessing this fit are: 

1. bic: 2 * log-likelihood - G * log(n) 
2. reward_closeness: how close the means of the fit data are to the model for that 

CNV 
3. af: The difference in allele frequency of the fit data with that CNV model 
4. hwe_penalty: a Hardy-Weinberg penalty 
5. overlap: A penalty which describes how much the peaks of the fit data overlap 

each other 
6. The above five terms are put together in the following fashion: 5 * bic - abs(af * 

bic) + reward_closeness / (overlap + af + 1) - overlap - 30 * hwe_penalty 

 
V.  The model with the highest score is selected.  The next step is imputation of clusters 
that are missing.  If use_af is True, then the imputation is directional, which means that if 
the model does not describe clusters at positions 3 and 4, then clusters are not imputed in 
that "direction," i.e. they are imputed toward 0 and 1, but not upward.  Similarly if the 
model does not describe clusters at points 0 and 1, then clusters are not imputed in that 
direction.  Directional imputation translates the models clusters to map onto the fit data, 
and the desired cluster centers and variances are taken after the translation occurs.  Model 
variances are used without modification for missing clusters. 
 
VI. Confidences are generated from the final clusters.  Given the computed clusters, 
confidence scores are computed for every CNV at every sample.  The confidence score is 
a combination of exactly two terms: a "global" and a "local" penalty.  The global penalty 
refers to how much a point appears to belong to one peak versus its next closest rival.  
The global penalty is simply the membership score of the EM algorithm of the second 
closest peak divided by the closest peak.  The local penalty reflects how far away a point 
is from its closest peak, in a more absolute sense. 
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Birdseed: Algorithm 
Overview 
Birdseed’s function is to assign AA, AB, and BB genotype calls to each sample with two 
copies of a SNP, and characterize genotype- and allele-specific probe responses for each 
SNP. 

Conventions and terms (extrapolate where necessary): 
N refers to the number of samples 
G refers to the number of clusters 
xai refers to the normalized intensity of allele A of sample i 
xbi refers to the normalized intensity of allele B of sample i 
xi refers to the paired normalized intensity (xai, xbi) of sample i 
μAAa refers to the expected mean of allele A of the AA cluster from the prior models 
μABb refers to the expected mean of allele B of the AB cluster 
μ2a refers to the mean of allele A of the 2nd cluster (not yet assigned to a genotype class; 
 a cluster that will become a posterior model for a genotype class) 
μ3 refers to the 2d point (μ3a, μ3b) 
σAAa refers to the expected standard deviation in the allele A dimension of the AA cluster 
σABb refers to the expected standard deviation in the allele B dimension of the AB cluster 
σ2a refers to the standard deviation in the allele A dimension of the 2nd cluster 
cor refers to the shared covariance term representing the correlation of noise in the A 
 and B dimensions across all clusters. 
Σ3 refers to the 2d covariance matrix: 
  [[σ3a

2, cor*σ3a*σ3b)] 
   [cor*σ3a*σ3b), σ3b

2]] 
wAA refers to the expected weight of the AA cluster 
wAB refers to the expected weight of the AB cluster 
w2 refers to the weight of the 2nd cluster 
Σi refers to a summation of the following expression, over all samples from i = 1 to N 

Inputs 
Normalized and summarized (median polish) intensities from a set of .cel files for each 
SNP allele.  This takes the form of a matrix with N columns and 2*M rows (ignoring 
headers), where N is the number of samples to be analyzed, and M is the number of 
SNPs.  Note: for the version of birdseed included in apt-probeset-genotype, normalization 
and summarization can occur on the fly, and .cel files can be input directly. 

A file describing the gender of each sample.  Note: for the version of birdseed included in 
apt-probeset-genotype, gender is calculated on the fly, and this file is unnecessary. 

A models file which contains the means, variances, and proportions of discrete genotype 
classes observed for each SNP in HapMap.  (The default models file was built using a run 
of the HapMap samples at Affymetrix, Inc.—file available online.) 

Optionally, a file listing for each SNP which samples are not expected to have two copies 
and thus should be excluded from Birdseed for that SNP (typically this is a file generated 
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from Canary results).  SNPs where all samples are expected to have two copies need not 
be included in the file. 

Optionally, a file listing which SNPs have unusual copy number for males, females, or 
both, and what the expected copy number is for each gender.  (I.e. chrX, chrY, and 
mitochondrial SNPs.) 

Description of algorithm 
Birdseed is a 2d Gaussian Mixture Model (GMM) that clusters diploid samples into the 
canonical SNP genotype classes AA, AB, and BB.  For the most part, the algorithm is a 
2-dimensional GMM analogous to the 1-dimensional Canary.  Slight modifications are 
made to support sex and mitochondrial chromosomes (see Manual & Pseudocode). 

Initialization: 
The initial conditions for each cluster are based off a prior models file that contains SNP-
specific estimates of cluster locations and variances learned from samples of known 
genotype; a series of models are tested consisting of different number of clusters (since 
not all potential SNP genotype classes are necessarily represented in the given dataset).  
Priors are scaled in a SNP-specific manner by default to get them into the same intensity 
space as the samples.  By default, this scale s is calculated separately for each SNP as the 
average distance of a sample from the origin divided by the weighted average of the prior 
model means from the origin. 
 n = (Σi sqrt(Iai

2 + Ibi
2)) / N       (12) 

 d = (Σc=AA,AB,BB (wc + 0.1) * sqrt(μca
2 + μcb

2)) / Σc=AA,AB,BB (wc + 0.1) (13) 
 s = numerator / denominator       (14) 
The means in the SNP’s priors are scaled by s, while the variances are scaled by s2. 

The following series of models is tested with the specified initializations, in the specified 
order; unlike Canary however, first the number of clusters is determined followed by a 
labeling process to align the EM-fit clusters to genotype classes, as opposed to assuming 
the label up-front (except in the case of 3 clusters, where the labels must be AA, AB, and 
BB): 

A. G = 1 (a single cluster model) 
 --no initialization, since EM procedure is not required 
 
B. G = 2 (a 2-cluster model) 
 μ1 = μAA 
 μ2 = μBB 
 σ2

1a  = σ2
2a = (2/3) * (σ2

1a from G = 1 model) 
 σ2

1b  = σ2
2b = (2/3) * (σ2

1b from G = 1 model) 
 cor = 0.0 
 w1 = w2 = 0.5 
 
C. G = 3 (a 3-cluster model) 
 μ1 = μAA 
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 μ2 = μAB 
 μ3 = μAB 
 Σ1 = ΣAA 
 Σ2 = ΣAB 
 Σ3 = ΣBB 
 cor = weighted mean of cor term in {ΣAA, ΣAB, ΣBB} 
 w1 = w2 = w3 = 1/3 

D. G = 3 (a 3-cluster model with a different initialization)  
 μ1a = maximum A allele intensity observed in samples 
 μ1b = minimum B allele intensity observed in samples 
 μ3a = minimum A allele intensity observed in samples 
 μ3b = maximum B allele intensity observed in samples 
 μ2a = (μ1a + μ3a) / 2 
 μ2b = (μ1b + μ3b) / 2 
 Σ1, Σ2, Σ3 are calculated equivalent to the way that expected variance is calculated  
  (see Eq. (23)), using ΣAA, ΣAB, and ΣBB as input. 
  Σ1 and Σ3 are initialized to further be var_start times larger. 
       Σ2 is initialized to further be var_start / 20 as large. 
 cor = 0 
 w1 = w2 = w3 = 1/3 

For a given initialization, cluster parameters are updated via a modified Expectation-
Maximization (EM) algorithm, iteratively estimating cluster membership (E-step) and 
maximizing cluster parameters (M-step). 

E-Step: 
Standard posterior assignment probabilities are computed for each sample i (with 
intensity xi) and cluster j (with mean μj, standard deviation σj, and frequency wj) pair. 

P(j | i) = K * (wj / |Σj|1/2) * exp( -(xi - μj)T * Σj
-1 * (xi - μj) / 2) )   (15) 

where K is a normalization constant set such that (Σj=1 to G P(j | i)) = 1.  P(j | i) reflects the 
relative probability sample i was drawn from the normal distribution j compared to the 
other Gaussians. 

M-Step: 
The parameters of each cluster are updated based on current cluster membership.  Typical 
M-Step updates are modified to include s pseudopoints placed at the prior model’s mean 
μpj for each cluster j when G == 3 (s is 0 for G<3), to utilize a single term representing 
noise correlation in the two alleles (dimensions) instead of the typical calculation for 
cross-correlation (since crosstalk remains constant regardless of cluster), and to 
regularize the variances toward a single function when G >= 2.  The correlation term is 
forced to be positive during the first few iterations to avoid fitting a bad local optimum 
(see manual & pseudocode for more details). 
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wj = (Σi=1 to N P(j | i)) / N       (16) 

μj = [((1 / (s + wj)) * Σi=1 to N (P(j | i) * xi))] + [(s / (s + wj)) * μpj]  (17) 

σjaa
2 = (1 / wj) * Σi=1 to N (P(j | i) * (xia - μja)2)     (18) 

σjbb
2 = (1 / wj) * Σi=1 to N (P(j | i) * (xib - μjb)2)     (19) 

σjab
2 = (1 / wj) * Σi=1 to N (P(j | i) * (xia - μja) * (xib - μjb))   (20) 

After all clusters have been updated, the variance terms are regularized to be similar to 
each other (Eq. (23): m below is the expected slope of how standard deviation increases 
with the mean—m is taken as given, and we regress to fit the intercept b of the line y = 
mx + b, where y is standard deviation and x is mean): 
 
 cor = Σj=1 to G (wj * σjab

2 / (σjaa * σjbb))      (21) 
 

σjab
2 = max(c1 – (iter-1)/c2, cor) * (σjaa * σjbb)     (22) 

Expected std σexp-j = [(1 / G) * Σk=1 to G (σk – m * μk)] + (m * μk)  (23) 

σj = (wj / (wj + r)) * σj + (r / (wj + r)) * σexp-j     (24) 
 

where c1 is a parameter set to be high to ensure clusters have positive correlation in the 
noise of the A and B dimensions, and c2 sets how quickly this value decays as the number 
of iterations increases in Eq. (22), and r is a regularization parameter in Eq. (24). 
 
EM is iterated for at least a minimum number of iterations until convergence (or a 
maximum number of iterations is reached), at which time the next model is tried. 

Unobserved Cluster Imputation: 
When G<3, unobserved clusters are imputed.  First the EM-fit clusters are labeled with 
the appropriate genotype class(es), based primarily off Euclidean distance between μj and 
μAA, μAB, and μBB; however, Hardy-Weinberg principles and relative allele frequencies in 
HapMap can be used to help guide this process (see Manual & Pseudocode for more 
details).  Once labeled, missing clusters are imputed using regression coefficients learned 
when creating the prior models file; see below. 

Model Selection: 
A series of heuristics are used to determine which GMM model is best (in addition to the 
relative probability of observing the data given the EM-fit model). 

1. The standard BIC information criterion (penalizing higher-order models) 
2. How closely the final means (μ1, μ2, μ3) match the expected (μAA, μAB, μBB) 
3. How positive the cor term is 
4. How close the two wingspans are in length (dist(μ1, μ2) versus dist(μ2, μ3)) 
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5. Whether a single cluster is likely only explaining an outlier 
 
For a description of how these terms are weighted, see Manual & Pseudocode 

Genotyping: 
Using the selected model, each sample i is genotyped as the copy number of the cluster j 
which maximizes the equation 

 P(j | i) = (wj / |Σj|1/2) * exp( -(xi - μj)T * Σj
-1 * (xi - μj) / 2) )    (25) 

Samples are furthermore assigned a confidence reflecting the relative likelihood of 
belonging to the next-best cluster (a global confidence), as well as a local confidence 
reflecting their absolute probability.  The local confidence is computed as a sigmoidal 
function of the number of standard deviations away from the cluster center a sample lies. 
To compute the global confidence score: 
 confglobal-i = P(jsecond-best | i) / P(jbest | i)      (26) 
 
To compute the local confidence score: 
 

qi = sqrt((xi - μj)T * Σj
-1 * (xi - μj) / 2 )      (27) 

conflocal-i = 1/(1 + exp(p – qi)) - 1/(1 + exp(p))    (28) 

where q is the number of standard deviations a sample is from its assigned cluster, and p 
is the number of standard deviations beyond which the local confidence score quickly 
increases (the inflection point in Eq. (28)). 
 
The overall confidence score is then: 

(c * confglobal-i) + ((1 - c) * conflocal-i)      (29) 

where c is the relative confidence contribution parameter,  0 <= c <= 1.
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Birdseed: Manual & Pseudocode 
 
Overview 
Birdseed’s function is to assign AA, AB, and BB genotype calls to each sample with two 
copies of a SNP, and characterize genotype- and allele-specific probe responses for each 
SNP. 
 
Inputs 
Normalized and summarized (median polish) intensities from a set of .cel files for each 
SNP allele.  This takes the form of a matrix with N columns and 2*M rows (ignoring 
headers), where N is the number of samples to be analyzed, and M is the number of 
SNPs.  Note: for the version of birdseed included in apt-probeset-genotype, normalization 
and summarization can occur on the fly, and .cel files can be input directly. 

A file describing the gender of each sample.  Note: for the version of birdseed included in 
apt-probeset-genotype, gender is calculated on the fly, and this file is unnecessary. 

A models file which contains the means, variances, and proportions of discrete genotype 
classes observed for each SNP in HapMap.  (The default models file was built using a run 
of the HapMap samples at Affymetrix, Inc.—file available online.) 

Optionally, a file listing for each SNP which samples are not expected to have two copies 
and thus should be excluded from Birdseed for that SNP (typically this is a file generated 
from Canary results).  SNPs where all samples are expected to have two copies need not 
be included in the file. 

Optionally, a file listing which SNPs have unusual copy number for males, females, or 
both, and what the expected copy number is for each gender.  (I.e. chrX, chrY, and 
mitochondrial SNPs.) 

Outputs 
Genotypes: 0, 1, and 2 (corresponding to AA, AB, and BB calls) at each SNP in each 
sample, along with a confidence score ranging from 0 (most confident) to 1 (least 
confident).  Samples that were excluded (due to expected copy number other than two) 
are assigned a genotype of “-1”. 

Optionally, a file analogous to the models file which contains the means, variances, and 
proportions of discrete genotype classes observed for each SNP in the data.  These 
represent the posterior models that characterize genotype- and allele-specific probe 
responses for each SNP. 

Brief description of algorithm 
In brief, the algorithm utilizes Expectation-Maximization as follows.  The models are 
used for initialization.  Each sample is then assigned a probability of belonging to each 
cluster (estimation).  Next, each cluster is redefined based off the samples that belong to 
it (maximization), as well as being tethered to the expected location of the model.  New 
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cluster definitions are also forced to share certain covariance properties with each other.  
The estimation and maximization steps are iterated until convergence, at which point one 
can assign the likelihood of the model (the final Gaussian parameters).  The likelihood of 
the model is dependent on how well the model explains the observed data as well as how 
well the model fits certain expectations (for example, that the clusters are evenly 
spaced).  Birdseed chooses between models built from different initializations and 
between 1, 2, and 3 clusters explaining the data.  If the best model has fewer than 3 
clusters, genotype classes corresponding to clusters not in the model are imputed to 
increase sensitivity to rare genotypes.  The resulting 3 clusters represent the probe 
responses to each genotype class on the particular batch being run.  Special 
considerations are used on the X, Y, and mitochondrial chromosomes. 

Description of algorithm 
Below is a pseudocode sketch of the algorithm.  All code is open-source and can be 
downloaded free of charge from www.broad.mit.edu/mpg/birdsuite.  For additional 
detail, see the actual source code. 

There are a large number of flags and constants that can be adjusted according to the 
user's preference.  However, the default values have been tested and are appropriate for 
the vast majority of typical inputs. 
 --std_slope: (m in Eq. (23)).  Expected slope of cluster standard deviation versus 
cluster mean intensity.  Default: 0.062.  Each SNP has 3 clusters (representing AA, AB, 
and BB classes).  One expects the variance in the A dimension to be larger for clusters in 
which the A mean is larger.  This slope explains that expected relationship.  The default 
was empirically derived using non-polymorphic probes for which clustering is 
unnecessary. Permissible range: [0,Inf) 
 --epsilon: Tolerance at which to stop EM. Default: 0.001.  Permissible range: 
(0,1) 
 --var_start: Variances are initialized to be var_start times the expected variances. 
Default: 1.1.  Permissible range: (0,Inf) 
 --cluster_distance_ratio_cutoff: The ratio of adjacent cluster means in each 
direction must exceed this value. Default: 0.85.  Setting this to 1.0 would prevent, for 
example, the AB cluster having a higher mean intensity in the A dimension than the AA 
cluster, or a higher mean intensity in the B dimension than the BB cluster.  Permissible 
range: [0,Inf) 
 --merged_cluster_threshold: If this distance between two clusters gets lower than 
this, EM is aborted. Default: 0.025.  Permissible range: [0,Inf) 
 --small_cluster_weight_threshold: When EM is fitting a 3-cluster model, the log-
likelihood is penalized by small_cluster_penalty if the weight of any cluster is less than 
this threshold.  Default: 0.01.  Setting this higher can decrease the probability of outliers 
defining their own cluster.  Permissible range: [0,1] 
 --small_cluster_penalty: Default: 10.0.  Permissible range: (-Inf,Inf) 
 --low_hom_weight_fraction: When EM is fitting a 2-cluster model (where the 
clusters represent either AA and AB, or AB and BB), a cluster cannot be assigned to a 
homozygous class if its weight is below low_hom_weight_fraction (note: modified by 
low_hom_sample_inflation). Default: 0.5.  Permissible range: [0,1) 
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 --low_hom_sample_inflation: When EM is fitting a 2-cluster model and the 
number of samples analyzed is small, one might expect the homozygous class could have 
a lower weight than otherwise expected.  Therefore the low_hom_weight_fraction is 
multiplied by the number of samples divided by (the number of samples plus 
low_hom_sample_inflaction). Default: 100.  Permissible range: [0, Inf) 
 --starting_cluster_weight: All clusters are assigned to have at least this weight. 
Default: 0.05.  Permissible range: [0,0.33333] 
 --expected_wingspan_ratio: A wingspan is defined as the distance between a 
homozygous cluster and the heterozygous cluster. The log likelihood is penalized by 
unbalanced_wingspan_penalty if the ratio of wing spans is above this number. Default: 
1.15.  Permissible range: [1,Inf) 
 --unbalanced_wingspan_penalty: Default: 5.0.  Permissible range: [-Inf,Inf] 
 --min_covar: The covariance term reflecting the correlation of variance in the A 
dimension and variance in the B dimension is not allowed to be below this. Default: -0.7.  
Permissible range: (-1,1) 
 --max_covar2: The covariance term reflecting the correlation of variance in the A 
dimension and variance in the B dimension is not allowed to be above this. Default: 0.95.  
Permissible range: (-1,1) 
 --max_covar1: c1 in Eq. (22).  The covariance term is forced to be at least 
max_covar1 minus the EM iteration number divided by covar_floor_decay for the first 
covar_floor_decay iterations.  This ensures clusters begin with positive correlation 
(which is expected due to cross-hybridization) as opposed to negative correlation (which 
can happen by a single cluster describing more than one genotype class). Default: 0.9.  
Permissible range: (-1,1) 
 --covar_floor_decay: : c2 in Eq. (22).  Forced positive covariance decays over this 
iteration scale. Default: 8.  Permissible range: [0,max_iter] 
 --max_iter: Stop EM after max_iter iterations. Default: 50. Permissible range: 
[1,Inf) 
 --low_covar_threshold: If the covariance term is below low_covar_threshold, 
penalize the log likelihood of the model by low_covar_penalty * (low_covar_threshold-
covar). Default: 1.0.  Permissible range: [-1,1] 
 --low_covar_penalty: How much to penalize a covariance term lower than 
low_covar_threshold. Default: 15.0.  Permissible range: (-Inf,Inf) 
 --wing_length_delta_penalty: How much to penalize the log likelihood of a model 
based on differences between the prior model’s winglengths and the posterior model’s 
winglengths. Default: 50.0.  Permissible range: (-Inf,Inf) 
 --mean_dist2: If two neighboring clusters have means that are this close, the log 
likelihood of the model is penalized. Default: 1.2.  Permissible range: [0,Inf] 
 --lambda3: How much the log likelihood of models having close neighboring 
clusters are penalized. Default: 2.5. Permissible range: [0, Inf] 
 --bic_weight: How much to penalize the log likelihood of a model based on the 
number of clusters the model fit. Default: 1.0.  Permissible range: (-Inf,Inf). 
 --anchor_weight: How strongly clusters are anchored to the priors when fitting 3 
clusters with EM, expressed in number of pseudocounts (not a percentage). (s in Eq. 
(17)).Default: 1.0.  Permissible range: [0,Inf) 
 --max_anchor_percentage: When fitting 3 clusters, clusters are anchored using the 
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minimum of anchor_weight and max_anchor_percentage*numsamples pseudocounts. 
Default: 5.0.  Permissible range: [0,Inf) 
 --cluster_variance_regularization_factor: Determines how much variances are 
regularized to be fit by a single term in each dimension, as opposed to fit separately for 
each cluster. Default: 1.0.  Permissible range: [0,Inf) 
 --var_mult: If a cluster is imputed (as opposed to fit directly with EM), the 
expected variance of the cluster is multiplied by (var_mult^2).  This helps recover rare 
genotype classes. Default: 1.2.  Permissible range: [0,Inf). 
 --hom_hom_penalty. When fitting a model with only 2 clusters, penalize the 
assignment of those 2 clusters to the AA and BB classes by hom_hom_penalty.  This is 
because one does not typically expect to see the examples of each homozygous state 
without also observing the heterozygous state. Default: 2.1.  Permissible range: [1,Inf). 
 --mono_het_penalty.  When fitting a model with only 1 cluster, penalize the 
assignment of that 1 cluster to the AB class by mono_het_penalty.  One does not 
typically expect to only observe heterozygous samples without any homozygous samples 
as well. Default: 999999999.  Permissible range: [1,Inf). 
 --allow_unlikely_clusters: Allows a 2-cluster model to be assigned to AA and BB 
genotype classes, as well as allowing a 1-cluster model to be assigned to the 
heterozygous genotype class. Default: true 
 --disallow_unlikely_clusters: Does not allow a 2-cluster model to be assigned to 
the AA and BB genotype classes, nor does it allow a 1-cluster model to be assigned to the 
heterozygous genotype class.  Mutually exclusive with --allow_unlikely_clusters. 
Default: false 
 --two_cluster_low_observation_penalty_factor: When fitting a model with 2 
clusters, penalize an alignment that indicates the observed homozygous cluster was rare 
in the input models file.  The penalty is (this factor + total num observations in input 
model) / (this factor + num observations of the observed homozygous cluster in input 
model).  Thus, large numbers remove dependence on input allele frequencies, while small 
numbers increase such a dependence. Default: 10.  Permissible range: [0, Inf). 
 --final_weight_min: After EM, when assigning discrete genotype classes to 
samples, assume each cluster has a weight at least equal to final_weight_min. Default: 
0.333.  Permissible range: [0,1]. 
 --relative_distance_confidence_weight: When assigning discrete genotype classes 
to samples, there are 2 inputs into the confidence of the assignment: The relative 
likelihood of a sample coming from the second-best assignment, and the absolute 
likelihood a sample comes from the best assignment.  The larger this weight, the more the 
confidence is determined by the former input. Default: 0.8.  (c in Eq. (29)).  Permissible 
range: [0,1]. 
 --std_inflection_point: When assigning discrete genotype classes to samples, this 
determines the function that relates absolute likelihood a sample comes from the best 
assignment to a confidence score. Default: 4.0.  (p in Eq. (28)). Permissible range: [0, Inf] 
 --correction-factor: Use the supplied value to transform prior models into the 
same intensity space as the samples.  Default: not used.  Permissible range: (0,Inf) 
 --snp_specific_correction_factor: Determine the value to transform prior models 
into the same intensity space as the samples on the fly for each SNP, using the sample 
intensity data itself.  Default: enabled.  Disable by specifying either --correction-factor or 
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--average-correction-factor. 
 --average_correction_factor: Determine the value to transform prior models into 
the same intensity space as the samples once for the entire dataset, using the mean 
intensity of the entire input dataset.  Default: disabled. 

Conventions and terms (extrapolate where necessary): 
EM refers to Expectation-Maximization 
N refers to the number of samples 
Iai refers to the intensity of allele A of sample i 
Ibi refers to the intensity of allele B of sample i 
μAAa refers to the expected mean of allele A of the AA cluster from the prior models 
μABb refers to the expected mean of allele B of the AB cluster 
μ2a refers to the mean of allele A of the 2nd cluster (not yet assigned to a genotype class; 
 a cluster that will become a posterior model for a genotype class) 
μ3 refers to the 2d point (μ3a, μ3b) 
σAAa refers to the expected standard deviation in the allele A dimension of the AA cluster 
σABb refers to the expected standard deviation in the allele B dimension of the AB cluster 
σ2a refers to the standard deviation in the allele A dimension of the 2nd cluster 
cor refers to the shared covariance term representing the correlation of noise in the A 
 and B dimensions across all clusters. 
Σ3 refers to the 2d covariance matrix: 
  [[σ3a

2, cor*σ3a*σ3b)] 
   [cor*σ3a*σ3b), σ3b

2]] 
wAA refers to the expected weight of the AA cluster 
wAB refers to the expected weight of the AB cluster 
w2 refers to the weight of the 2nd cluster 
Σi refers to a summation of the following expression, over all samples from i = 1 to N 

Pseudocode: 
For each SNP: 

I. Only consider samples expected to have 2 copies at that SNP (exclude samples based 
on gender/SNP location and based on exclusions input from Canary). 

II. Scale the prior model to be in the space intensity space as the samples.  By default, 
this scale is calculated separately for each SNP as the average distance of a sample from 
the origin divided by the weighted average of the prior model means from the origin (as 
in Eq.s (12)-(14). 

III. Fit 4 potential models to the data. 
 A. The data came from a single cluster 
  i. Determine the parameters of this clusters 
   μ1a = Σi Iai / N 
   μ1b = Σi Ibi / N 
   σ2

1a = Σi (Iai – μ1a)2 
   σ2

1b = Σi (Ibi – μ1b)2 
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   cor = (Σi (Iai – μ1a)* (Ibi – μ1b)) / (σ1a * σ1b) 
   w1 = 1 – 2*starting_cluster_weight 
  ii. Determine which genotype class this cluster corresponds with 
   Choose the genotype class whose prior mean expectation 
   has the smallest Euclidean distance to μ1.  Setting 
   --disallow-unlikely-clusters stops the closest mean from being the  
   AB class.  The distance to the AB class is other multiplied by  
   mono_het_penalty. 
  iii. Impute clusters corresponding to remaining genotype classes 
   1) Imputation is done using regression parameters learned during 
       prior model generation for the mean.  See below. 
       The final clusters are taken as a weighted average of the above 
       and the original prior expectation of where each cluster should 
       lie including the cluster fit with the supplied data.  The weights  
           for the averaging depend on --anchor_weight and       
       --max_anchor_percentage. 
   2) Imputation of variances is as follows: 
    Standard deviation of a cluster along a particular dimension 
    is assumed to increase proportional the mean of the cluster.  
    The slope of this increase is supplied (see --std_slope).  The 
    intercept is allowed to vary, and is fit using regression  
    given the non-imputed covariance matrices.  This intercept  
    along with std_slope is then used to derive the expected  
    variances for each cluster given its mean. 
 
 B. The data came from 2 clusters 
  i. Invoke an EM algorithm to determine the parameters of these clusters 
   1) Initialize the clusters 
    μ1 = μAA 
    μ2 = μBB 
    σ2

1a  = σ2
2a = (2/3) * (σ2

1a from IIIAi) 
    σ2

1b  = σ2
2b = (2/3) * (σ2

1b from IIIAi) 
    cor = 0.0 
    w1 = w2 = 0.5 
   2) While the model continues to explain the data better: 
    a) Estimate the membership of each sample to each cluster 
        (Standard E step) 
    b) Estimate the parameters of each cluster with the   
         following modifications to the standard M-step: 
              There is a single covariance term representing the  
                              correlation of noise in the A and B dimensions,  
                                         calculated as the weighted average of this term in  
                                         each cluster. 
                         The covariance term is forced to be positive during  
                                          the first few iterations.  (See --max_covar1). 
                         If the means of two clusters get too close, EM is  
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                                          aborted. 
                         Variances are regularized to be similar to each other  
                                                     as follows:  The expected variance is calculated  
                                                     as in IIIAiii2, using the typical EM-fit variances 
                                                     to determine std_intercept.  The final variance is  
                                                     a weighted average of the original fitted variance 
                                                     and the expected variance. 
                                          (See --cluster_variance_regularization_factor.) 
 
  ii. Determine which two genotype classes the clusters represent 
   This determination is dependent on: 
        the Euclidean distance between the clusters and the prior  
    expectation 
        Hardy-Weinberg principles (see --low_hom_sample_inflation) 
        relative allele frequencies in HapMap 
     (see --two_cluster_low_observation_penalty_factor) 
        Whether an AA/BB is sought (see --allow_unlikely_clusters) 
 
  iii. Impute cluster corresponding to the remaining genotype class 
   Equivalent to IIIAiii 

 C. The data came from 3 clusters 
  i. Invoke an EM algorithm to determine the parameters of these clusters 
   1) Initialize the clusters 
    μ1 = μAA 
    μ2 = μAB 
    μ3 = μAB 
    Σ1 = ΣAA 
    Σ2 = ΣAB 
    Σ3 = ΣBB 
    cor = weighted mean of cor term in {ΣAA, ΣAB, ΣBB} 
    w1 = w2 = w3 = 1/3 
   2) Same as IIIBi2, with the following additional modification to  
        the M-step: 
             a number of pseudopoints are placed at the expected mean  
                        for each cluster.  The pseudopoints placed at μAA are forced  
                                   to belong to cluster 1, the pseudopoints placed at μAB are  
                                   forced to belong to cluster 2, and the pseudopoints placed at  
                                   μBB are forced to belong to cluster 3.  See --anchor_weight  
                                   and --max_anchor_percentage 
  ii. Cluster 1 is forced to represent the AA cluster, cluster 2 the AB cluster,  
       and cluster 3 the BB cluster. 
  iii. No cluster imputation is necessary, since we fit all clusters with EM 

 D. Identical to C, except for the initialization step which is as below: 
   1) Initialize the clusters 
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    μ1a = maximum A allele intensity observed in samples 
    μ1b = minimum B allele intensity observed in samples 
    μ3a = minimum A allele intensity observed in samples 
    μ3b = maximum B allele intensity observed in samples 
    μ2a = (μ1a + μ3a) / 2 
    μ2b = (μ1b + μ3b) / 2 
    Σ1, Σ2, Σ3 are calculated equivalent to the way that expected  
         variance is calculated in IIIAiii2, using ΣAA, ΣAB, and  
              ΣBB as input. 
              Σ1 and Σ3 are initialized to be yet var_start times larger 
              However, Σ2 is initialized to be var_start / 20 as large. 
    cor = 0 
    w1 = w2 = w3 = 1/3 
 
IV. Select the best model (one of IIIA, IIIB, IIIC, or IIID).  This is primarily dependent 
on the ability of the model to explain the data (that is, the relative probability of 
observing the data given each model), but models are also penalized on the following 
criteria to ensure the final clustering matches reasonable expectations about the shape and 
relative distribution of the AA, AB, and BB clusters: 
 The standard BIC information criterion (penalizing higher-order models) 
 How closely the final means (μ1, μ2, μ3) match the expected (μAA, μAB, μBB) 
 How positive the cor term is 
 How close the two wingspans are in length (dist(μ1, μ2) versus dist(μ2, μ3)) 
 Whether a single cluster is likely only explaining an outlier 
See descriptions of parameters for more explanation 
  
V. Output the clusters corresponding to the best model 

VI. Assign an AA, AB, or BB genotype to each sample, as well as a confidence score 
reflecting the certainty of the assigned genotype 
 A. The log-likelihood of observing a sample i given a genotype x is calculated 
 
 B. Sample i is assigned to genotype x resulting in the largest log-likelihood 
 
 C. Sample i is assigned a confidence corresponding to the weighted average of the 
      relative likelihood of the sample’s intensity given a different genotype             
      (compared to the assigned genotype) and the absolute likelihood of the             
      sample’s intensity given the assigned genotype, as in Eq.s (26)-(29). 
 

Modifications for X, Y, and mitochondrial chromosomes: 
0) On the X chromosome, females are clustered as above.  Males are clustered separately 
as above, with the following modifications.  On the Y chromosome, males are clustered 
as above, with the following modifications.  On the mitochondrial chromosomes, all 
samples are clustered together, with the following modifications: 
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1) A special prior model line exists in the prior models file describing the location of the 
A/null and B/null clusters.  This is used in lieu of the typical prior. 

2) Only allow clusters to correspond to homozygous genotype classes in step IIIAii. 

3) In step IIIB, parts ii and iii are skipped. 

4) Do not attempt step III-C or III-D above (fitting the data with 3 clusters) 
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Generation of “prior models” file for Birdseed: 
 
The 270 canonical HapMap samples were genotypes on the Affymetrix SNP5.0 and 
SNP6.0 platforms.  The resulting CEL files were quantile normalized and data from all 
SNPs were summarized using median polish, affording two allele intensity measurements 
per sample per SNP for the A and B alleles.  For most of these SNPs, HapMap genotypes 
are available.  (When no genotyping data is available, see below.)  Using the HapMap 
calls, the sample data can be further summarized into “cluster” data.  The two-
dimensional mean of all samples of a given genotype can be computed as well as their 
covariance matrix.  The number of observations that contributed to a given cluster are 
also recorded. 
 
Data from (up to 50,000) SNPs in which all genotypes in each of the three clusters (AA, 
AB, and BB) are observed more than a defined number of times (num_points, typically 
equal to 6) are stored.  We designate these SNPs as “fully observed.”  These data become 
the basis of the regression equations to infer the locations of unobserved clusters in other 
SNPs. 
 
Five separate cases of predictions are possible in SNPs that are not fully observed: 
 
Case 1: Only AA observed, predict AB and BB 
Case 2: Only AA and AB observed, predict BB 
Case 3: Only AB and BB observed, predict AA 
Case 4: Only BB observed, predict AA and AB 
Case 5: Only AA and BB observed, predict AB (very rare) 
 
Regarding cluster position, simple linear regression was performed on the cluster centers 
on the case of the fully observed SNPs.  This is possible since all clusters have been 
observed, making the fully observed SNPs suitable as training data.  Covariances are 
handled identically except the log of the covariance was used for on-diagonal terms while 
the signed square root was used for off-diagonal terms.  The quality of these regression 
equations can be tested with a simple r2 metric.  (The left hand side of each prediction 
equation designates which clusters were observed.  The right hand side designates which 
clusters are being predicted.  Underscore followed by a single letter designates prediction 
of a mean, while underscore followed by two letters designates a covariance.) 
 

Prediction r2 
AA -> AB_a 0.996
AA -> AB_b 0.952
AA -> BB_a 0.854
AA -> BB_b 0.943

AA + AB -> BB_a 0.946
AA + AB -> BB_b 0.998
AB + BB -> AA_a 0.998
AB + BB -> AA_b 0.941
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BB -> AA_a 0.941
BB -> AA_b 0.852
BB -> AB_a 0.952
BB -> AB_b 0.996

AA + BB -> AB_a 0.998
AA + BB -> AB_b 0.998

AA -> AB_aa 0.993
AA -> AB_ab 0.893
AA -> AB_bb 0.987
AA -> BB_aa 0.979
AA -> BB_ab 0.573
AA -> BB_bb 0.977

AA + AB -> BB_aa 0.987
AA + AB -> BB_ab 0.636
AA + AB -> BB_bb 0.990
AB + BB -> AA_aa 0.990
AB + BB -> AA_ab 0.635
AB + BB -> AA_bb 0.987

BB -> AA_aa 0.976
BB -> AA_ab 0.565
BB -> AA_bb 0.979
BB -> AB_aa 0.986
BB -> AB_ab 0.892
BB -> AB_bb 0.840

AA + BB -> AB_aa 0.994
AA + BB -> AB_ab 0.913
AA + BB -> AB_bb 0.995

 
As can be seen, the regression equations furnish good predictive power.  Hence the fully 
observed SNPs furnish a set of regression equations, which were applied to SNPs where 
at least one genotype class was not observed.  The directly observed genotype clusters 
combined with those inferred using the regression were used to furnish a map of “prior 
models” for all SNPs on the SNP5.0 and SNP6.0 microarrays.  Since the number of 
observations of each genotype class is also output in prior models file, one can determine 
which clusters were inferred, and which have parameters estimated directly from data. 
 
In the case where no genotype data was available (and thus not even a single genotype 
class was observed and labeled), the model generated for that SNP was simply the mean 
of the fully observed SNPs, the so-called “grand mean” and “grand covariance.”  This 
generic model was necessary because Birdseed requires a model for each SNP 
genotyped. 
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Birdseye: Algorithm 
Overview 
Birdseye’s function is to discover regions of variable copy number, especially those that 
are rare or de novo. 

Description of algorithm 
Birdseye is a Hidden Markov Model (HMM) to find regions of variable copy number in a 
sample. 

Model: 
The hidden state is the true copy number of the individual’s genome; the observed states 
are the normalized intensity measurements of each probe on the array. 

 

Modeling Emission Probabilities for CN probes for HS=2, HS=0,1,3,4: 
For each copy number probe, we empirically estimate the emission probability of 
intensities for an underlying hidden state of 2 copies as a normal distribution with mean 
and variance equal to the trimmed mean and variance of the intensities of all samples in 
the batch (excluding those already determined to be copy-variable via Canary, as well as 
10% of samples with the highest intensities and 10% of samples with the lowest 
intensities.)  Given this normal distribution, we impute the emission probability of 
intensities for an underlying state of 0 or 1 copies as normal distributions whose mean 
and variance properties are determined using regression parameters learned from a 
combination of probes on chromosome X (for which we know males have 1 copy and 
females 2 copy) and single SNP alleles (for which BB samples have 0 copies of allele A, 
AB samples have 1 copy of allele A, and AA samples have 2 copies of allele A).  The 
emission probabilities of intensities for an underlying state of 3 or 4 copies is then 
imputed assuming the differences in like parameters between the model for each copy 
number state increases as a power law. 

Modeling Emission Probabilities for SNP probes for HS=2, HS=0,1,3,4: 
For each SNP the hidden state actually includes allelic information in addition to copy 
number.  For this reason (and because we use the Viterbi algorithm to determine the most 

     

True underlying (but 
hidden) states HS: 
Copy number of genome 

Observations 
(probe intensities) from 
copy number (CN) and 
SNP probes 

HS1 HS2 HS3 HS4 

CN1 CN2 SNP1 CN3 
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probable path), the emission probability of intensities for an underlying hidden state of 2 
copies is a union of the three normal distributions specified by Birdseed that model the 
AA, AB, and BB clusters; the HMM utilizes whichever of these distributions results in 
the maximal likelihood as the emission probability for an underlying state of 2 copies.  
The means and variances of the BB, AB, and AA clusters encode SNP-specific 
information regarding the intensity of each allele in response to 0, 1, and 2 copies of the 
A allele, respectively, and similarly for 2, 1, and 0 copies of the B allele; these are used 
directly to estimate the means and variances of the null, A, B, AAB, ABB, and AABB 
clusters.  (See “Extrapolating a Cluster Set” in Fawkes section).  As with copy number 
probes, increasing dosages of each allele are then imputed using a power law. 

Sample-specific Emission Probabilities: 
The probe-specific emission probabilities above are furthermore modified by a sample-
specific factor.  For each sample, the average distance from the expected cluster mean 
(for which expected copy number mean is used, see “Modeling Transition Probabilities” 
below) is computed in terms of standard deviations.  For most samples, this should be 
approximately 1.  However, for noisy samples, their intensities will tend to be farther 
from the mean than expected, and can be significantly greater than 1.  The standard 
deviations of each emission probability density function is thus multiplied by this sample-
specific metric.  This metric also provides a good measure of sample-chromosome 
quality; noisy sample-chromosomes should be discarded from downstream analyses. 

Modeling Transition Probabilities: 
The transition probabilities between underlying copy number states is asserted such that 
transitioning out of a state reflecting normal copy number (typically 2, but varying for the 
sex chromosomes) is low, while transitioning within the same state or returning to normal 
copy number is relatively high.  For each chromosome, first a global copy-number of that 
chromosome is estimated across all probes; this is used to determine the normal copy 
number of that chromosome for that sample.  We note the algorithm is fairly robust to 
reasonably variations in the transition matrix, and that events can be filtered based on 
associated LOD scores such that purposefully setting permissive transition probabilities 
may be logical. 

Furthermore, transition probabilities are dependent on the genomic distance between two 
consecutive probes.  The transition penalty is computed as follows, where d is the 
distance, N is normal copy number, and X and Y are different abnormal copy numbers: 
p(switch N to X) = 0.005 * (1 – e-dist / 20000) 
p(switch X to N) = 0.5 * (1 – e-dist / 20000) 
p(switch X to Y) = 0.0025 * (1 – e-dist / 20000) 
The probability of self-transitions (N to N, or X to X) are computed as 1 minus the 
probability of transitions to other copy numbers.  The transition probabilities (0.5% and 
50%) and length constant (20kb) are chosen based on the approximate number and size of 
CNVs observed per genome as observed in the accompanying manuscript SAM, FKG et 
al. 
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Tracing a Path of Copy Number States of the Genome: 
The emission probabilities and the transition matrix are combined to find a path S = {s1, 
s2 .. sn} representing the state at each probe that maximizes the (log) probability of 
observing the data 

log(P(x1 .. xn)) =  Σi=1 to n [log(P(xi | si)) + log(P(si | si-1))] 
       + log(P(state==2 | sn))     (30) 

where the first term in the sum [log(P(xi | si))] represents the log of the relative 
probability of the observed intensity given the state (and equivalent to the formulae given 
above in the Canary and Birdseed sections), the second term in the sum [log(P(si | si-1))] 
represents the log of the probability of transitioning to the current state given the previous 
state (s0 is assumed to be normal copy number), and the last term outside the sum 
[log(P(state==2 | sn))] forces a transition to end at normal copy number.  The 
maximization is carried out using the standard Viterbi algorithm.  The resulting path V 
can then be segmented into regions of continuous copy number, and these segments are 
output. 

Assigning a Score to Each Discovered CNV: 
The LOD score for a given segment is the log of the relative likelihood of the path 
including the event (Si = {F1i, Ci, Ci, Ci, … F2i}, where F1i reflects the left flanking copy 
number, F2i the right flanking copy number, and Ci the copy number of the segment) 
versus the path that maintains consistent copy number with one or both of the flanking 
regions to the event (the maximum of Si = {F1i, F1i, F1i, F1i, … F2i} and Si = {F1i, F2i, F2i, 
F2i, … F2i}).  The relative likelihood of a path Si is computed as above. 
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Birdseye: Manual & Pseudocode 
Overview 
Birdseye finds ranges of constant copy number in each sample, operating one 
chromosome at a time.  The breakpoints of these segments is output, along with a LOD 
score reflecting the probability of the event.  Birdseye can also be used to assign a copy 
number state without segmentation, useful for testing previously discovered CNVs in 
new samples (for example, to determine if a CNV found in a child is also present in one 
of his parents).  However, this functionality is not described in detail here.  See the 
website (http://www.broad.mit.edu/mpg/birdsuite/) for more details. 
 
Inputs 
Normalized and summarized (median polish) intensities from a set of .cel files for each 
SNP allele on a single chromosome, in chromosomal order.  This takes the form of a 
matrix with N columns and 2*Ms rows (ignoring headers), where N is the number of 
samples to be analyzed, and Ms is the number of SNPs.  Required header columns 
include the chromosomal location of each SNP. 

Normalized intensities from a set of .cel files for each CN probe on a single chromosome, 
in chromosomal order.  This takes the form of a matrix with N columns and Mc rows 
(ignoring headers), where N is the number of samples to be analyzed, and Mc is the 
number of CN probes.  Required header columns include the chromosomal location of 
each CN probe. 

A file with Ms rows describing the batch-specific, allele-specific probe responses to 
normal copy number for SNPs (i.e. the posterior clusters output from Birdseed).  

A similar file with Mc rows describing the batch-specific probe responses to normal copy 
number for CN probes. 

Outputs 
A file with one row per segment of constant copy number for each sample.  Each 
segment is annotated with the sample number, the copy number state, the chromosome, 
the start breakpoint, the end breakpoint, and the score. 

Brief description of algorithm 
In brief, the algorithm is a Hidden Markov Model to determine copy number.  While the 
each sample is independent of all other samples, all samples in a batch are processed 
concurrently for speed and ease of code.  The input files represent emission probabilities 
of probes to a sample with 2 copies.  Emission probabilities of probes to samples of 0, 1, 
3, and 4 copies are imputed.  This emission probability for a given sample is modified by 
the apparent noise of that sample.  A particular transition matrix specifying the 
probability of transitioning within the same copy number state (high probability) and 
between copy number states (low probability) is assumed; copy number states are 
assumed to be discrete and in the range [0,maxCopyNumber].  The Viterbi best path of 
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copy number states is then calculated for each sample.  Each discrete segment of the path 
is then scored for how much it increases the probability of observing the given data 
versus if no transition occurred at one or both of its breakpoints.  The segments and 
scores are output for use in Fawkes and for CNV studies. 
 
This algorithm differentiates itself from other CNV HMMs through seamless integration 
of CN and SNP probes, leaving the data in the original intensity space (so SNPs retain 2-
dimensional information), batch- and probe-specific characteristics (so inherently noisier 
probes are effectively downweighted), sample-specific characteristics (so false positive 
rates should not vary wildly from one sample to the next), and the ability to assign a score 
to each reported event (such that the precise values of the transition matrix are less 
important, since one can filter events post-Birdseye). 

Options 
maxCopyNumber: The maximum copy number state to test each sample as having.  
Default: 4.  Permissible range: [0, Inf) 

Pseudocode 
I. Load all data. 

II. Calculate sample-specific variance correction factor.  This is calculated as the square 
of the average distance represented in standard deviations of a sample’s intensity from 
the mean of a CN probe.  However, it is not allowed to vary below 4/9 or above 9/4.  This 
prevents samples with abnormal amounts of copy number variation on a chromosome 
from being vastly undercalled. 

III. Assert the transition matrix as follows: 
 The probability of transitioning from copy number two to any other copy number 
is 0.005 * (1-e^(-distance_between_probes / 20000)). 
 The probability of transitioning from a copy number other than two to copy 
number two is 0.5 * (1-e^(-distance_between_probes / 20000)). 
 The probability of transitioning from a copy number other than two to a different 
copy number that is also not two is 0.0025 * (1-e^(-distance_between_probes / 20000)). 
 The probability of remaining at the same copy number can then be filled in such 
that the sum of transition probabilities from a particular copy number state totals 1. 
      These values approximate the number and size of CNVs we expect to see in a sample.  
In practice, the algorithm is robust to reasonable variation of these values, and since 
CNVs are assigned scores reflecting their probability, filtering can also happen 
downstream.  We do not that these values may be inappropriate for different platforms 
that have more or fewer probes per unit distance along the chromosome.  For example, an 
array tiled more densely with probes should have a lower probability of transitioning 
between copy number state.  This transition matrix may also benefit from a change of 
parameters for the case of samples expected to have a large number of transitions (e.g. 
samples taken from tumors). 
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IV.  Compute the Viterbi best path using standard HMM techniques. 
 A.  The sample is forced to begin with copy number = 2. 
 B.  At each successive locus, the relative log likelihood of the sample’s intensity 
at the locus is computed for each potential copy number state as a point estimate. 
  i. For a given SNP, copy-variable emission probabilities are computed as 
detailed below in Fawkes-->extrapolating a cluster set. 
  ii. For a given CN probe, copy-variable emission probabilities are 
computed using a regression built from chromosome X.  For probes on chromosome X 
that show differential signal between males and females, simple linear regression was 
able to fit the male (1-copy) mean intensity given the female (2-copy) mean intensity 
with 5% standard error.  These regression coefficients are used to impute the 1-copy 
emission probability of a CN probe given the 2-copy emission probability (that is an 
input to the algorithm).  Emission probabilities for other copy number states are imputed 
by assuming a power law whose order was determined by using SNP data in a single 
allele (where samples of various genotype then represent 0, 1, or 2 copies of that allele). 
  iii. Due to gross artifacts on the chip (such as scratches), the data is not 
necessarily Gaussian, and huge outliers can occur.  To minimize their impact, no sample 
is ever considered to be more than 3 standard deviations away from any given Gaussian 
cluster.  Since noise varies from sample to sample, the variance associated with each 
cluster is multiplied by the value calculated in II. 
  iv. The relative log-likelihood of each copy number state is computed.  For 
SNPs whose emission probability of a given copy number is represented by multiple 
clusters/gaussians, the maximum of the log-likelihoods from any of these clusters is used 
as the log-likelihood of that copy number state. 
 C.  The total log-likelihood of each copy number state at the current locus is 
defined as the sum of: 
  i. The total log-likelihood at the previous locus of the copy number state 
that was transitioned from. 
  ii. The log-likelihood of the particular transition. 
  iii. The point estimate of the log-likelihood of each copy number state at 
the current locus as computed in B. 
 D.  The path that maximizes the total log-likelihood at the current locus as 
computed in C is stored. 
 E.  After reaching the end of the chromosome, the sample is forced to transition to 
copy number state = 2.  We once again store the path that maximizes the total log-
likelihood. 
 F.  The Viterbi best path is traced back along the chromosome. 

V. For each segment of consistent copy number, compute the relative log-likelihood of 
the data given a change in copy number compared to the log-likelihood of the data if the 
given segment were the same as that of the flanking regions.  This represents the LOD 
score associated with each event.  (This is not computed for events spanning more than 
1000 probes for efficiency.) 
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Fawkes 
Overview 
Fawkes produces SNP genotypes of the form {n, m, c}, in which n is the non-negative 
integer number of copies of the A allele, m is the non-negative number of copies of the B 
allele, and c is the floating-point confidence of this call, where 0 is most confident and 1 
is least confident.  
Inputs 
Fawkes reads the following inputs: 

• Birdseed cluster sets: these are the diploid cluster sets that birdseed found for all 
the SNPs for which diploid calls were made, plus synthesized diploid cluster sets 
for all SNPs that birdseed processed but did not make diploid calls. The cluster 
sets file also contains haploid cluster sets for the SNPs for which birdseed made 
haploid calls. 

• Copy number ranges: For each sample, a list of {genomic range, copy number}. 
Any genomic range that is not covered by an entry in this list with a confident 
score is assigned a no-call. (These data are produced by blending Canary and 
Birdseye output.) 

• Locus for each SNP. Note that some SNPs do not have a locus and are handled 
specially. 

• Gender of each sample to be called. 
• Special SNPs: List of SNPs of unusual copy number, along with the expected 

copy number for each SNP for males and females.  
• Allele summaries for each SNP-sample combination. 

 

Processing 
For each SNP: 

1. Load the diploid cluster set for the SNP. Calculate various values based on the diploid 
cluster set that will be used to extrapolate other cluster sets. (c.f. Calculating Cluster 
Metadata below.) 

2. If a haploid cluster set exists for the SNP, load it also. 
3. Load the SNP locus, if it exists. 
4. If the SNP locus is not loaded, determine the expected copy number for males and the 

expected copy number for females for the SNP. 
5. For each sample: 

i. If the SNP locus was loaded, look up the copy number for this sample and 
locus in the copy number range data. 

ii. If the SNP locus was not loaded, look up the gender of the sample and 
determine the expected copy number for this SNP and gender. 

iii. Extrapolate the cluster set for the copy number for this sample using the values 
calculated in step (a) above. (c.f. Extrapolating a Cluster Set below.) 
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iv. Read the A and B allele summaries for the sample, and determine the call and 
confidence as compared to the cluster set using the same algorithm that 
birdseed uses. 

 

Calculating Cluster Metadata 
When starting to process a SNP, several values are calculated to facilitate extrapolating 
cluster sets. The diploid cluster set can be viewed as defining, for both the A and B 
alleles, the intensity at copy number 0, 1 and 2.  

For each of the two alleles, the mean ratio μr is stored, i.e.  
 μra = (μAAa – μABa) / (μABa – μBBa)       (31) 
 μrb = (μBBb – μABb) / (μABb – μAAb)       (32) 
The variance of a cluster is assumed to increase as the mean increases. For each of the 
two alleles, the slope of the standard deviation σs is stored: 
 σsa = (σAAa - σABa) / (μABa – μBBa)       (33) 
 σsb = (σBBb - σABb) / (μBBb – μBBb)       (34) 
The underlying A and B allele frequencies wa and wb are estimated using the frequencies 
of the AA, AB and BB clusters: 
 wa = 1 – wb = ((2 * wAA) + wAB) / 2 
The covariance term “cor” from one cluster of the diploid cluster set is stored as in Eq. 
(21). This is assumed to be the normalized covariance for all clusters. 

Extrapolating a Cluster Set 
If the copy number of a sample for a SNP is n, then n+1 clusters are created, 
corresponding to the genotypes A=n,B=0; A=n-1,B=1; …; A=1,B=n-1; A=0,B=n 
The mean of each of these clusters is determined by induction, where C below represents 
the copy number, and μaC represents the mean of allele A when there are C copies of that 
allele : 
μa0, μa1, and μa2 are encoded directly in the SNP information: 

μa0 = μBBa ; μa1 = μABa ; μa2 = μAAa 

When C > 2, the following formula is used inductively: 

 μaC = μa(C-1) + μra * (μa(C-1) – μa(C-2))      (35) 

Similarly, μb0, μb1, … μbG are computed for allele B. 

The variance for each cluster and allele is similarly computed: 

σa0 = σBBaa ; σa1 = σABaa ; σa2 = σAAaa 

σaC = σa(C-1) + σsa * (μa(C) – μa(C-1))      (36) 
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Similarly, σb0, σb1, … σbG are computed for allele B. 

For any genotype j, with N copies of allele A, and M copies of allele B, the cluster is then 
computed as follows: 

μj = (μaN , μbM)         (37) 

Σj =  [[σaN
2, cor*σaN*σbM)] 

     [cor*σaN*σbM), σbM
2]]       (38) 

 wj = wa
N * wb

M * (n+m-1)! / ((n!) * (m!))     (39) 
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