Supporting Information

Peng, H. L., Payton, J. L., Protasiewicz, J.D. & Simpson, M. C.

"Twisting the Phenyls in Aryl Diphosphenes (Ar-P=P-Ar). Significant Impact upon Lowest Energy Excited States"

References with more than 10 authors

(26) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople *Gaussian03 (Rev.B.04)* 2003, Gaussian, Inc. Pittsburgh, PA.

Table S1. Selected Geometry and Energy Results from B3LYP/6-31G+(d,p) Calculations of Ph-P=P-Ph geometry optimizations as a function of $\tau_1 = \tau_2 = \tau$ (PPCC) phenyl twist angle, and for the central Ph-P=P-Ph cores of the crystal structures of Dmp-P=P-Dmp and Mes*-P=P-Mes* diphosphenes.

τ (PPCC) /Degrees	r(P=P) /Å	r(P-C) /Å	θ(PPC) /Degrees	E(HOMO-1) /eV	E(HOMO) /eV	E(LUMO) /eV	Relative Total E ^d /eV
0	2.0563	1.8393	104.1	-6.689	-6.069	-2.933	0.0324
15	2.0572	1.8385	103.6	-6.717	-6.085	-2.917	0.0184
30	2.0577	1.8388	102.3	-6.788	-6.140	-2.877	0.0034
32.4 ^a	2.0576	1.8385	102.2	-6.792	-6.146	-2.875	0.0000
45	2.0563	1.8416	101.0	-6.879	-6.224	-2.843	0.0242
60	2.0532	1.8473	100.2	-6.981	-6.307	-2.847	0.0907
75	2.0504	1.8534	99.9	-7.056	-6.363	-2.879	0.1632
90	2.0494	1.8559	99.8	-7.073	-6.384	-2.899	0.1945
62.0 ^b	2.0463	1.8662	102.4	-6.859	-6.234	-2.816	0.5179
81.2/13.0 ^c	1.9849	1.8403	97.5	-6.588	-6.394	-2.709	0.2378
		1 8420	109.8				

a. Minimum energy, unconstrained geometry of Ph-P=P-Ph at this level of computation.

b. Ph-P=P-Ph core crystal structure of Mes*P=PMes* (reference 24).

c. Ph-P=P-Ph core crystal structure of DmpP=PDmp (reference 25).

d. Relative to the energy of the 32.4° minimum energy structure.

τ (PPCC) /Degrees	r(P=P) /Å	r(P-C) /Å	θ(PPC) /Degrees	E(HOMO-1) /eV	E(HOMO) /eV	E(LUMO) /eV	Relative Total E ^b /eV
0	2.0436	1.8307	104.2	-6.646	-6.087	-2.886	0.0246
15	2.0443	1.8301	103.7	-6.676	-6.103	-2.869	0.0151
30	2.0447	1.8301	102.5	-6.751	-6.155	-2.824	0.0021
34.0 ^a	2.0446	1.8302	102.3	-6.770	-6.167	-2.817	0.0000
45	2.0430	1.8328	101.2	-6.847	-6.234	-2.778	0.0189
60	2.0398	1.8385	100.3	-6.952	-6.311	-2.767	0.0737
75	2.0367	1.8443	100.0	-7.034	-6.363	-2.783	0.1349
90	2.0355	1.8467	99.9	-7.060	-6.379	-2.795	0.1621

Table S2. Selected Geometry and Energy Results from B3LYP/6-311G+(2df,2p) Calculations of Ph-P=P-Ph geometry optimizations as a function of $\tau_1 = \tau_2 = \tau$ (PPCC) phenyl twist angle.

a. Minimum energy, unconstrained geometry of Ph-P=P-Ph at this level of computation. b. Relative to the energy of the 34.0° minimum energy structure.

Figure S1. A. Comparison of the ground state potential energy for Ph-P=P-Ph using B3LYP and the two basis sets 6-31+G(d,p) and 6-311+G(2df,2p). **B.** Comparison of these diagonals ($\tau_1 = \tau_2$) along the PES for Ph-P=P-Ph for both basis sets with that of a model diphosphene designed to simulate the Mes* ligand (bis-($2,6-tBu_2C_6H_2$)diphosphene) at the B3LYP/6-31+G(d,p) level.

Phenyl Twist Angle $\tau 1 = \tau 2$ / degrees

Figure S2. Comparison of the Kohn-Sham molecular orbital energies for Ph-P=P-Ph using B3LYP and the two basis sets 6-31+G(d,p) and 6-311+G(2df,2p).

Figure S3. Comparison of the energies of the first several singlet excited states for Ph-P=P-Ph using B3LYP and the two basis sets 6-31+G(d,p) and 6-311+G(2df,2p).

