Supplemental Data

Chromatin Architecture and Transcription Factor Binding Regulate Expression of Erythrocyte Membrane Protein Genes Laurie A. Steiner, Yelena Maksimova, Vincent Shultz, Clara Wong, Milind C. Mahajan, Sherman M. Weissman, Patrick G. Gallagher

Contents: Supplemental Table 1. Primers for mRNA Expression Studies.

Supplemental Table 2. Validation Primers for Quantitative-PCR Chromatin Immunoprecipitation Analyses.

Supplemental Table 3. Oligonucleotide Probes for Electrophoretic Mobility Shift Assays.

Supplemental Table 4. Evolutionary Conservation at Sites of GATA-1 Occupancy in Major Erythrocyte Membrane Genes

Supplemental Table 5. Results of Electrophoretic Mobility Shift Assays.

Supplemental Table 6. Evolutionary Conservation at Sites of NF-E2 Occupancy in Major Erythrocyte Membrane Genes

Supplemental Figure 1. RNA Polymerase II binding at the promoters of the 15 erythrocyte membrane genes (3 pages).

Supplemental Figure 2. H3Me3K4 binding at the promoters of the 15 major erythrocyte membrane genes (3 pages).

Supplemental Figure 3. Integrated genome browser view of regions of GATA-1 occupancy in selected erythrocyte membrane protein genes predicted by Tamalpais in K562 chromatin.

Supplemental Figure 4. Integrated genome browser view of regions of NF-E2 occupancy in selected erythrocyte membrane protein genes predicted by Tamalpais in K562 chromatin.

Supplemental Table 1. Primers for mRNA Expression Studies.

Gene	Primer Location	Forward Primer	Reverse Primer
ankryin-1	Exons 39-40	GAGGCCAAGAACACCTTCAC	TGCTCCTCTGTCACCTGCT
SPTA1	Exons 50-51	CATGAGCCCAAGTTTGAGAAG	GCAGTATAGTCCTCCAGTGAGACA
Band 3	Exons 19-20	AGGCAACCTTTGATGAGGA	AGGTGGGGATGTGGAATG
actb	Exons1 -2	GCACAGAGCCTCGCCTTT	CGGCGATATCATCATCCAT
ADD2	Exons 4-5	GCAGATGAAGAAGGGGAACA	GGCGTCATCATGGAGACATT
ADD3	Exons 12-13	TCAGTTGCTTGCTGGAATTG	ATGGGTTAGGAGGAGCTGGT
ADD1	Exons 13-14	AACCCCTTCACCACACTCAC	TCTGTTCTCTAGCCTCGTCCA
SPTB	Exons 25-26	CTCCACCTGCTGGGTGTC	ACACCTCCTGCTCCTTGTTC
ICAM4	Exons 1-2	CTCCAGGATCACCGCCTAC	GAATAGATGACCCGGCTTCC
ERMAP	Exons 10-11	GCAAACTCAGGCTGGAGAAG	AGGATGAGTTTGGGATGTGC
EPB41	Exons 15-16	GGTGGGATTTCAGAGACACG	GTCTGGGTGCTGCTCCTTT
EPB42	Exons 12-13	GGGGCTCATTCACAGAGAGA	GAACTGGAACTTGGCACACA
TMOD1	Exons 8-9	CATCCAACGCAATGATGAAC	CACCGCCACACACTAGACAC
ТРМ3	Exons 2-3	CCTGCAAAAGCTGGAAGAAG	CATCTTTTAAGGCCCGGTTT
EPB49	Exons 10-11	GTCATTGCCGATCCGAAG	TAGACGTTCCCTGGTGCAAG
RPS13	Exon 3-4	CATCTGACGACGTGAAGGAG	CTTGTGCAACACCATGTGAA
RPL27	Exon 2-3	ATGAAACCTGGGAAGGTGGT	GTCAATTCCAGCCACCAGAG
OAZ1	Exon 3-4	AAACGCATTAACTGGCGAAC	GAACTCCAGGAGAACTGCAAA
SRP14	Exon 3-4	GCTACCGATGGGAAGAAGAA	CAGCCCATCCATGTTAGCTC

Supplemental Table 2. Validation Primers for Quantitative-PCR Chromatin Immunoprecipitation Analyses.

Site of NF-E2			
Occupancy	Gene	Forward Primer	Reverse Primer
1	Ank1	TCTCATTCACACCAGCAAGG	GCTGGGAGCCAGGAATAAAT
2	SPTA1	CCAGAGCCTCCCAAAACTG	CCATCAGCCATACACAATCG
3	ADD2	TCAACTGGACAGTGGGAGAA	GTGTCTGTTGGGCATAGGTG
4	ADD2	CCAACTGCTTCCCTGACATT	TGCAGAGAGAAATGGGTTTG
5	ADD2	AATGCCTGACCATGACTTGA	TGGTTTTACTAACGTGGCAAGA
6	ADD1	TTCATAGAGCGGGAAGCATT	CCAGCAGGTGTTCCACATATT
7	ERMAP	GGCACACATATTTCACTCAACC	GCATGTATTCTGCCTCCACA
8	ERMAP	CTGCTGCAGTATGTTTTGTGG	CCACTTGCTGAGTTTTGGTG
9	ERMAP	GCTCCATGAGTCAAGCGATTA	TGACAAAATGGGAAGGATGC
10	ERMAP	CTGCTTCAGGGCTGTTTCTT	TTACCTTCCCATTCCCACCT
11	EPB41	TTTGGAGACGGGAGTTCTTG	GCTCACTTAACATGTACTAAATGAAGGAT
12	EPB41	TCTGAAGGGAGCAGGAGAAA	TCAAGAGGCTGAAGGTCACA
13	EPB41	ACAGCTTTCCCGCTTCAGT	GGCACCTGTGTGTGTGTTTC
14	EPB41	GAAGCGTTGATGGAGTGGAC	CCGTAAAAGCGAGTTCTGGA
15	EPB42	GCCGCAGTCTAAGGAATTTG	GAGCACTGACACTGCAGGAA
16	EPB49	GGCAGGGTGTGATTTGAGAG	ATGTGTGAGGGGGAGAGAGA
17	TMOD1	CCATTTCTATCGCCACATCC	AAGAGCAGCATGGAAGAAGG
18	TPM3	AAAAGGATTTCCTGGGGATG	AGGTGAGGGGTGCTATGTGT
Site of			
GATA-T			
Occupancy	Gene	Forward Primer	Reverse Primer
Occupancy 1	Gene Ank1	Forward Primer CTCACTTCAGCCTCACAGCA	Reverse Primer GCCTTCTTTCACAAATCAAGTT
Occupancy 1 2	Gene Ank1 Ank1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA
Occupancy 1 2 3	Gene Ank1 Ank1 SPTA1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA
Occupancy 1 2 3 4	Gene Ank1 Ank1 SPTA1 ADD1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC
Occupancy 1 2 3 4 5	Gene Ank1 Ank1 SPTA1 ADD1 ADD3	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC
Occupancy 1 2 3 4 5 6	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG
Occupancy 1 2 3 4 5 6 7	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG
Occupancy 1 2 3 4 5 6 7 8	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGTGGAAA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA
Occupancy 1 2 3 4 5 6 7 8 9	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP ERMAP EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA
Occupancy 1 2 3 4 5 6 7 8 9 10	Gene Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC
Occupancy 1 2 3 4 5 6 7 8 9 10 11	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGGGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTGC	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTTCGGCCTCAGT
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 TMOD1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTGC CCATTTCTATCGCCACATCC	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTCGACAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTTCGGCCTCAGT AAGAGCAGCATGGAAGAAGG
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 TMOD1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTGC CCATTTCTATCGCCACATCC ACCCCAAGAGATGCAAAATG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTCCGCCTCAGT AAGAGCAGCATGGAAGAAGG AACGTCAAAGTTGTCAAGTGGT
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 TMOD1 TMOD1 TMOD1	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTGC CCATTTCTATCGCCACATCC ACCCCAAGAGATGCAAAATG TTGTGGCTCATAGAGCTTGC	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GGATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTTGACCCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTCCGCCTCAGT AAGAGCAGCATGGAAGAAGG AACGTCAAAGTTGTCAAGTGGT CAGGAGGGGCTCTGTTTGT
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 TMOD1 TMOD1 TMOD1 TMOD1 TMOD1 TPM3	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTGC CCATTTCTATCGCCACATCC ACCCCAAGAGATGCAAAATG TTGTGGCTCATAGAGCTTGC TCACAAACTAGCACAATGTCAGG	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTCGAATACTCC CCCTAGATCATTTCGAATACTCC CCCTAGATCATTTCGAATACTCC CCCTAGATCATTTCGACCAAC GCTAAGGATTTCCCATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTTCGGCCTCAGT AAGAGCAGCATGGAAGAAGG AACGTCAAAGTTGTCAAGTGGT CAGGAGGGGCTCTGTTTGT CCTGGAAACACCTCCTCAAG
Occupancy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Positive	Gene Ank1 Ank1 SPTA1 ADD1 ADD3 ERMAP ERMAP ERMAP EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 EPB41 TMOD1 TMOD1 TMOD1 TMOD1 TPM3 b-globin	Forward Primer CTCACTTCAGCCTCACAGCA CTTGCAATCCTGTCTAACCTACA TGAGTGGCTGGCTTATACCC CTGTATTTCACAGGCCCACA AGAGAGAGGGCTGTGCTTTGTG TTGGTATTTGTGTTTTGGTATGCT CTGGAAGACCTGGAGGGTTGA AGGGAATGGAGGAGTGGAAA GAACTCGCTTTTACGGAACG AATCAGTTCTTCGCCAGTTGT TGGAGTGCACACTGGGTTAG CAGGTATCTGGGGAAGAGCA TGAGAGCTTTCCTGTGTTGG TTGTCTGTTTTGCGGTATTGA ATCCCATCAGACCCTTTTGA GCCAACAGTAATGTGTTTTGC CCATTTCTATCGCCACATCC ACCCCAAGAGATGCAAAATG TTGTGGCTCATAGAGCTTGC TCACAAACTAGCACAACACA	Reverse Primer GCCTTCTTTCACAAATCAAGTT AATGAGATGCAAACTCTCCACA CAGCTCTCTTCACCCCAAGA TACACCATTCCCACCTCTCC CAGAGGCAGTTATTCAGTTTGC TGAACGGTGGCTAAACCTTG AGGAGGGTAGAGCTGGAAGG TCCCAAACCAACTCATCACA GATCTGAATTTCGTCAACCA GAATCTGCCATTTATTGAGTGC CACCTCCAAGTTCTGAATACTCC CCCTAGATCATTTGACCCAAC GCTAAGGATTTCCGATTTTCA AGAAAGACAGGAAAGGCTGGT TCCTCACAGAGTTATTGCAGGT TGTGAATTTTCGGCCTCAGT AAGAGCAGCATGGAAGAAGG AACGTCAAAGTTGTCAAGTGGT CAGGAGGGGCTCTGTTTGT CCTGGAAACACCTCCTCAAG

Negative Control	GABRA6	CTGAACCTTTGGAAGCTGAGA	TTATTGGCCTCGGAAGATGA
Negative Control	chr 6	ACTGAAGGCCAGGTGCTATG	GAAATGGGTTTTCATCGTGTT
Site of NF-E2 GATA-1 Co-		Forward Drimor	Povereo Drimer
occupancy	Gene	Forward Fillier	Reverse Fillier
1	KCC3	GGATACATCTGTGTAGTATGGGAAA	TCCCACCTTAGCCTCTCAAA
2	E2F3	TGGGTTTTCAGTCGCAAGA	GTGCAGGGGTCAAATATGCT
3	E2F3	CTTGAACTCTGCCTGCTCTGT	ATGCCAGGGCAGTTGTATTG
4	E2F3	CCATTGTTTTACTGTGGCCTTT	CATACAAAACTCAACTCCAGACATAC
5	E2F3	TGTGTTCAAATATACCACCTCTCTCT	CGACCGAAACCTGTTGGTAA
6	RPS24	CCATTGTGTTTTCCTGGTATTTT	AGCCATTAGTCATGTAGCGAACT
7	RBM15	GCTTATGGATTGATGGGAAAGA	ACCCCTCAAACTGGCCTAC
8	CFOS	CACAGGTTCGGATGTTAGTGG	AGAGCATCATCCAGGCAAAC
9	CJUN	TCCCATAGTTGTCCCAGTCAG	CCATCTAGGGGCTTCAAAAA
10	p45NFE2	CTGAGCGTTCTGCTGACCTT	CACCGACTCTATGCCCTCTC
11	NRF2	TCACCTTTGGGATTAGGTCTTG	TGTTCCTGAAGTTTCTGTTGG
12	RUNX1	CAGTCATCAAAGACACAGAGGAA	AAAAAGGAACCCCTCTCCAA
13	DLL3	CACCTTGCACAGCCTCTACC	CTGCTTCTCTGTGCGTGTGT

Site of GATA-1		
Occupancy	Gene	EMSA Oligos
1	ANK1	tgaatgtTTATCAtttttac
		accctaagctgctatcaaacaccagaactt
		accagaacttatttcttctatctaactgta
		cttcctggtctctggtatctattattctat
		cgtgttgGTATCAttacaag
2	ANK1	gctgtgaAGATAGtatgtgg
		gggcggtgtgtatctgtgtatgcatgt
3	SPTA1	ttatatgAGATATaaacctt
		aatgatgGGATATcttcgtg
		agagctgTGATATtaaagctg
		cagtgcaGGATAAtttggct
		cctgcctcTTATCTtcccctg
		gattatgTTATCAgggtttt
		tgatgGGATATCTtcgtgtt
		ttccacaTTATCCagatcaa
4	ADD1	tcgagttGGATATtgagaatg
		tgtacccAGATAAtttatcc
		AGATAAtTTATCCgcatatg
5	ADD3	ctttgtgTTATCTatactct
		ggggaaacacagataagatagatggtt
		aagacacatgactatcccagcaatgctaa
		cctctggctttatcactccactaagtt
6	ERMAP	ttttattTTATCAatttata
		ttcctgaATATCCcaatctt
7	ERMAP	gcttctcCGATAAggagattg
		tagtcctGGATACtttggtg
		ggttattTTATCTttaaact
8	ERMAP	aggaagaGGATAAgttagga
		gaactggAGATACcagtttg
9	EPB41	no GATA-1 sites
10	EPB41	gtgtcttGGATATtattata
		aaaagcaGGATATatagccc
		gtacatgCTATCTggcgtac
11	EPB41	attgcatTTATCAtagcatt
		catagaaAGATAAagaagaa
		agaacttTGATATtttata
12	EPB41	tgtgcagGTATCTggggaag
13	EPB41	ttgggcaGGATAAtaccttc
		taggaaaTGATACtaaccta
		tgtgtatATATCAccatctg
		atatagaTGATATTATCTaa
		gaTGATATTATCTaatcata
		aaatcttGGATAGggattac

Supplemental Table 3. Oligonucleotide Probes for Electrophoretic Mobility Shift Assays.

14	EPB41	gctttagTGATACTATCAaa agTGATACTATCAaacagtt ctgcactTGATATaactcat cttaccaAGATAAatctgac acatgttTTATCCtcatgtt catactgTGATACcagcctt caaatgtATATCTggtccaa tttccaaAGATACtttaaac atagactTTATCCcatcaga ggtagttTTATCCcaattat ttgatcaATATCAgtaccat accacagTTATCAttctcaa
15	EPB41	tgtgtgcATATCTttagtga gatgtgtAGATAAGATATtt gtAGATAAGATATttttgta cccttttGTATCTtctttttt CTGAAGGagataaTTGGTGT
16	TMOD1	tccatttCTATCGccacatc
17	TMOD1	tacctgaAGATAAtgcaata
18	TMOD1	cttggtcTTATCTgcagaca cataaggGGATACAGATACt gGGATACAGATACtgcaggg
19	TPM3	ggcatgaAGATAGaagtttt attctgtCTATCTtaatctg

Supplemental Data. Table 4. Evolutionary Conservation at Sites of GATA-1 Occupancy in Major Erythrocyte Membrane Genes¹

Region of GATA-1 Binding	Max PhastCons Score	Max Regulatory Potential
		Score
1	0.320315003	0
2	0.998000026	0.278573006
3	1	0.060624
4	0.614	0.218105
5	1	0.330263
6	1	0.155851
7	0.299213	0.251003
8	0.973	0
9	0.645669	0.21786
10	1	0.281977
11	1	0.337995
12	0.977244	0
13	1	0.211255
14	0.988	0
15	1	0.395043
16	0.224219993	0.468782008
17	1	0.227656007
18	0.424881995	0.347528011
19	0.962	0

¹ Maximum PhasCons and regulatory potential scores were calculated for each region of GATA-1 occupancy. Regions with PhastCons scores >0.8 and Regulatory Potential scores >0 were considered to have conserved regions predicted to contain a *cis*-regulatory module.

Gene	Site Number	Number of Potential GATA Sites	Number of EMSA Positive GATA Sites	Location	Tamalpais Stringency
Ankyrin	1	5	1	Intragenic	L2-L3
Ankyrin	2	2	0	Intragenic	L1
α -Spectrin	3	8	4	Intragenic	L4
α-Adducin	4	3	0	Intragenic	L4
γ-Adducin	5	4	2	Intragenic	L4
ERMAP	6	2	0	3' Adjacent	L2-L3
ERMAP	7	3	2	3' Adjacent	L1
ERMAP	8	2	0	Intragenic	L2-L3
Protein 4.1R	9	0	0	5'Adjacent	L2-L3
Protein 4.1R	10	3	1	Intragenic	L2-L3
Protein 4.1R	11	3	1	Intragenic	L2-L3
Protein 4.1R	12	1	0	Intragenic	L2-L3
Protein 4.1R	13	6	0	Intragenic	L2-L3
Protein 4.1R	14	12	4	Intragenic	L4
Protein 4.1R	15	5	2	Intragenic	L4
Tropomodulin	16	2	0	5' Intergenic	L1
Tropomodulin	17	1	0	5' Intergenic	L4
Tropomodulin	18	3	1	Intragenic	L4
Tropomyosin	19	2	1	Intragenic	L2-L3

Supplemental Table 5. Results of Electrophoretic Mobility Shift Assays.¹

¹ Intragenic regions of GATA binding are within an exon or intron. Adjacent regions of GATA-1 binding are within 10 kb of the 5' or 3' end of the gene. Intergenic regions of GATA-1 binding are greater than 10 kb from the 5' or 3' end of the gene.

Supplemental Data Table 6. Evolutionary Conservation at Sites of NF-E2 Occupancy in Major Erythrocyte Membrane Genes¹

Region of NF-E2 Binding	Max PhastCons Score	Max Regulatory Potential
		Score
1	1	0.410688
2	0.645669	0.338894
3	0.977244	0
4	1	0.308142
5	0.932323	0.218286
6	0.948	0
7	1	0.155851
8	0.962	0.282132
9	1	0.323301
10	0.858	0.42025
11	0.327748	0.510371
12	0.991	0.214608
13	0.997	0
14	0.614	0.218105
15	0.653543	0.520551
16	0.998	0.278573
17	0.15874	0.468782
18	1	0.227656

¹ Maximum PhasCons and regulatory potential scores were calculated for each region of NF-E2 occupancy. Regions with PhastCons scores >0.8 and regulatory potential scores >0 were considered to have conserved regions predicted to contain a *cis*-regulatory module.

Supplemental Figure Legends

Supplemental Figure 1. RNA Polymerase II binding at the promoters of the erythrocyte membrane genes. Integrated genome browser view of RNA Polymerase II binding at the promoters of the erythrocyte membrane genes in erythroid (K562) and non-erythroid (HeLa) cells. A. Ankyrin-1 B. Band 3 C. β -spectrin D. β -Adducin E. α -Adducin F. γ -Adducin G. ICAM-4 H. Protein 4.1R I. Protein 4.2 J. Dematin K. β -Actin L. Tropomodulin. M. Tropomyosin

Supplemental Figure 2. H3Me3K4 binding at the promoters of the erythrocyte membrane genes. Integrated genome browser view of H3Me3K4 binding at the promoters of the 15 erythrocyte membrane genes in erythroid (K562) and non-erythroid (HeLa) cells. A. Ankyrin-1 B. α -Spectrin C. Band 3 D. β -Adducin E. α -Adducin F. γ -Adducin G. ICAM-4 H. Protein 4.1R I. Protein 4.2 J. Dematin K. β -Actin L. Tropomodulin. Asterisk denotes the location of "exon 0" which is not listed in the UCSC browser. M. Tropomyosin

Supplemental Figure 3. Integrated genome browser view of regions of GATA-1 occupancy in selected erythrocyte membrane protein genes predicted by Tamalpais in K562 chromatin. A. Ankyrin-1 B. α -Adducin. C. γ -Adducin. D. Protein 4.1R. E. Tropomodulin. F. Tropomyosin.

Supplemental Figure 4. Integrated genome browser view of regions of NF-E2 occupancy predicted by Tamalpais in K562 chromatin. A. Ankyrin-1. B. α -Adducin C. β -adducin. D. Protein 4.1R E. Protein 4.2. F. Dematin G. Tropomodulin H. Tropomyosin.

Supplemental Figure 1 – Page 1/3

Supplemental Figure 2 – Page 3/3

Supplemental Figure 3-page 1/2

Е

