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SUPPLEMENTAL FIGURE LEGENDS 
 
Figure S1. SIRT6 and RELA interaction. 
(A) SIRT6 interacts specifically with RELA in endogenous co-IPs. Shown are Western 

blots of endogenous SIRT6 IPs or negative control anti-Flag IPs probed with antibodies 

specific for the indicated NF-κB family members. *, antibody heavy chain; arrows 

indicate the expected sizes of p50 and p52.  

(B) Co-IP of endogenous SIRT6 with endogenous RELA.  

(C) RELA-SIRT6 interaction is independent of DNA bridging. Shown is Western blot 

analysis of RELA following FLAG IP from 293T cells expressing FLAG-SIRT6 or empty 

vector; IPs carried out +/- ethidium bromide (EtBr,100 ug/ml).  

(D) SIRT6 expression is not induced upon NF-κB activation.  Western analysis with the 

indicated antibodies shows that SIRT6 levels do not change following TNF-α treatment. 

The expected acute decrease in IκB levels (upper band) is observed under these 

conditions, confirming the efficacy of the TNF-α treatment. The lower band is a non-

specific cross-reacting protein. 

 
Figure S2. Interplay of SIRT6 and RELA on chromatin.  
(A) Immunoblot analysis of RELA in cells transfected with siRELA 1 and 2.  siRELA 1 

targets the same sequence as the shRELA used in Figure 2.  siRELA 2 target sequence: 

CCCACGAGCTTGTAGGAAATT. 

(B) RELA knock-down inhibits SIRT6 recruitment to promoters of NF-κB target genes. 

SIRT6 ChIPs were performed in HeLa cells transfected with siRELA 2 or control siRNAs, 

following treatment with TNF-α (20 ng/ml). SIRT6 occupancy (mean ± s.e) is shown 

relative to untreated control cells. 



(C) SIRT6 recruitment to NF-κB target genes is selective. ATP2C1, PDZD2, TRIM25, 

and IAP2 are all induced by TNF-α and known to be direct RELA targets (Lim et al., 

2007); however, SIRT6 is only detected at the IAP2 promoter (upon TNF-α stimulation). 

Gene expression analysis in these same cells (Figure S4) confirmed that IAP2 becomes 

hyperactivated in SIRT6 depleted cells while the other three genes do not. SIRT6 

occupancy (mean ± s.e) is shown relative to untreated control cells. 

(D) SIRT6 limits RELA occupancy at the promoter of RELA target gene promoters. 

ChIP with α-RELA antibodies was performed following continuous TNF-α treatment (20 

ng/mL); RELA occupancy (mean ± s.e) at the IAP2 promoter relative to untreated control 

samples is shown. 

(E) Hyper-acetylation of other histone acetylation sites is not observed in SIRT6-

depleted cells.  H4K8 acetylation (H4K8Ac) levels are not increased in SIRT6-

knockdown (S6 sh2) cells compared to control (pSR) cells. H4K8Ac levels (mean ± s.e) 

are normalized to control untreated cells. Similar results were observed at other 

promoters, and for H4K16 acetylation (data not shown). 

 
Figure S3. SIRT6, H3K9Ac and RELA ChIP at NF-κB promoters in MEFs. 
(A) Wild-type and RelA-/- MEFs were treated with TNF-α (20 ng/mL) for 1 hour, and 

ChIP with an α-Sirt6 antibody was performed.  Shown is Sirt6 occupancy (mean ± s.e) at 

the Birc3 (murine homologue to IAP2) and Il1rl1 promoters relative to untreated control 

samples. *, p<0.05. 

(B) Wild-type and Sirt6-/- MEFs were treated with TNF-α (20 ng/mL) for 1.5 hours, and 

ChIP with α-H3K9Ac and α-H3 antibodies was performed. Shown are H3K9Ac levels 

(mean ± s.e) at the Birc3 and Il1rl1 promoters relative to untreated control samples and 

normalized to total H3 levels. *, p<0.05. 

(C) Wild-type and Sirt6-/- MEFs were treated with TNF-α (20 ng/mL) for 1.5 hours, and 

ChIP with α-RELA antibodies was performed. Shown is RELA occupancy (mean ± s.e) 

at the Birc3 and Il1rl1 promoters relative to untreated control samples. *, p<0.05. 

 
Figure S4. SIRT6 knockdown leads to NF-κB target gene induction 
(A) Gene expression analysis of genes enriched for NF-κB motifs in promoters and 

known NF-κB target genes (Hinata et al., 2003; Hinz et al., 2001) following TNF-α 

treatment (10 ng/ml) for the indicated times. *, Genes verified by qRT-PCR.  



(B) Increased expression of NF-κB target genes in SIRT6 knock-down (S6 sh2) cells. 

Shown is quantitative TaqMan real-time PCR analysis of the indicated mRNAs (mean ± 

s.e), normalized to GAPDH.  

(C) Increased expression of NF-κB target genes with SIRT6 knockdown depends on 

RELA. (Top) Western blots confirming siRNA-mediated RELA knockdown. (Bottom) 

Quantitative TaqMan real-time PCR analysis (mean ± s.e) of MnSOD, normalized to 

GAPDH. A similar trend is observed for several other genes (data not shown). 

(D) Levels of expression of RELA-dependent NF-κB family members in SIRT6 

knockdown cells. Slight increases are seen for several family members, consistent with 

the observed increase in mRNA levels. 

 
Figure S5. No effects of SIRT6 on NF-κB release from IκB or direct deacetylation of 
RELA. 
 (A) SIRT6 depletion has no effect on release and re-sequestration of RELA. Shown is 

the RELA DNA binding activity in HeLa cells following a 30 minute pulse of TNF-α 

treatment (2.5 ng/ml) by the NoShift ELISA assay (Novagen) (mean ± s.d.). 

(B) SIRT6 depletion does not affect IκB degradation but induces increased re-synthesis 

of IκB-α. Immunoblot of IκB-α in pSR and S6 sh2 HeLa cells following a 30 minute pulse 

of TNF-α treatment (2.5 ng/ml). Arrows point to time-points of IκB-α re-synthesis. 

(C) SIRT6 does not deacetylate RELA in vitro. In vitro deacetylation reactions were 

carried out with the indicated purified recombinant proteins.  Acetylated RELA was 

purified as follows: 293T cells were co-transfected with T7-RELA and p300 

acetyltransferase and treated with TNF-α (20 ng/mL for .5 hours), and RELA protein was 

affinity purified with anti-T7 antibodies.  Unacetylated RELA was purified from cells in the 

absence of p300 expression or TNF-α. These preparations of RELA were incubated with 

recombinant purified SIRT6 or SIRT1, or buffer control in NAD-dependent deacetylation 

reactions.  SIRT1 efficiency deacetylates RELA, whereas SIRT6 does not. 

 

Figure S6. Representative genotyping and IGF-1 levels of cohort mice. 
(A) Representative genotyping of cohort mice. PCR analysis with primers designed for 

the wild-type and null alleles of Sirt6 and RelA was performed to identify mice of the 

indicated genotypes. Genotyping primer sequences are: 

GTGCATCTCAATGGTGCAGTGCATGTT (wild-type, 5’), 



GCAATAGCATCACAAATTTCACAAATA (knockout, 5’), and 

GTGTGATTGGTAGAGAGGCACGTGGAT (common, 3’). 

(B) Serum IGF-1 levels (mean ± s.e.) in wild-type (n=5) and Sirt6-/-RelA+/- (n=6) mice at 

25 and >90 days. p-value is indicated. 

 

Figure S7. Murine gene expression data. 
A) Shown is the expression of all direct NF-κB targets in wild-type and Sirt6-/- MEFs, 

based on Lim et al. (Lim et al., 2007). Sirt6-dependent targets are indicated on the right 

(56%); a gene is considered Sirt6 dependent if its average fold induction upon TNF-α 

treatment is higher in Sirt6-/- as compared to wild-type.  

(B) Shown is the average expression of genes within significantly induced or repressed 

Gene Ontology terms following treatment with TNF-α in wild-type and Sirt6-/- MEFs.  
(C) Shown is the expression of NF-κB motif module genes in wild-type, Sirt6-/- and Sirt6-

/-RelA+/- spleen tissues, all normalized to wild-type expression levels.  

 

Figure S8. Sirt6 Expression in young and old murine tissues.  
Shown is the western blot analysis of Sirt6 protein in young (~3 month) and old (24–27 

month) spleen and liver tissue. 

 
Table S1. Sirt6-dependent motif modules induced or repressed in seven Sirt6-/- 
tissues. Listed are the motif modules that are induced (+) or repressed (–) upon Sirt6 

knockout in mouse. Notations following some transcription factor names (ex. Q6_01) are 

identifiers for variants of the motifs according to TRANSFAC. Standalone sequences or 

sequences before a transcription factor name represent consensus binding motifs (key 

for combination of nucleotides: Y = C or T; R = A or G; W = A or T; S = C or G; K = T or 

G; M = C or A; N = unknown).  

 

Table S2. Primer sequences for the promoter regions of NF-κB target genes. 
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