Supplemental Tables and Figures

"Defective responses to oxidative stress in protein L-isoaspartyl repair-deficient *Caenorhabditis elegans*"

Shilpi Khare, Tara A. Gomez, and Steven Clarke

Supplemental Table S1:

PCM-1 activity assay.

Nematode extracts were prepared either from NGM+OP50 plates or liquid culture and analyzed for PCM-1 methyltransferase activity as described by Kagan et al. (1997). Specific activities determined in triplicate are given with standard deviation values.

Strain	Grown on NGM plates (pmol/min/mg protein)	Grown on S-Media liquid culture (pmol/min/mg protein)
N2	0.14±0.01	1.02±0.02
pcm-1 (qa201)	0.02±0.1	-0.001±0.02
pcm-1 (tm363)	Not determined	0.016±0.01
PL51	0.24±0.01	7.09±0.2
PL54	-0.02±0.001	Not determined

Supplemental Table S2:

Effect of juglone (236 µM) on young adult nematode survival.

Young adult nematodes were treated on NGM plates containing 236 μ M juglone as described previously (Cysper and Johnson, 2002; De Castro et al., 2004) in three replicate trials (N2 and *pcm-1* (*qa201*), n = 45) or two replicate trials (*pcm-1*(*tm363*), n = 30). The data shown represents the average percentage of nematodes alive following juglone incubation.

Time of Incubation		% Alive					
(hour)	N2	рст-1 (qa201)	pcm-1 (tm363)				
2	0	2	6				
3	0	2	6				
4	0	0	6				
5	0	0	0				

Supplemental Table S3:

Paraquat delays the development of wild-type (N2) and *pcm-1* mutant animals.

Eggs (about 100) were transferred to duplicate NGM+OP50 plates in the presence and absence of 0.2 mM paraquat and the developmental stage of each worm was determined after 48 h at 25 °C as L1, L2, L3, and L4 larvae and as young adult/egg-laying adult (YA/ELA) nematodes. The experiment was replicated a total of four times. The differences between the percentage values of the wild-type and *pcm-1* mutant (both mutants *qa201* and *tm363*) groups was tested in the two-tailed Student's t-test (unequal variance) and p-values were determined. No correction was made for multiple sample correction.

L1 cont	rol	L1 p	araguat	L2 co	ontrol	L2 pa	araguat	L3 co	ontrol	L3 p	araguat	L4 c	ontrol	L4 p	araguat	YA/EL	A control	YA/E	LA paraguat
N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant
0	0	19	0	0	0	7	11	0.6	0	0	6	0	10.5	0	0	99	89.5	74	83
0	0	6	0	0	6	5	21	25	8.4	10	20	10	7	5	0	65	79	75	60
0	0	1	22	0	0	6	78	0	0	36	0	0	0	0	0	100	100	57	0
0	0	0	2	3.3	0	0	20	3.3	0	46	68	3.3	6	53	10	90	94	1	0
	0		16		0		58		1		26		5		0		94		0
	0		7		4		75		4		0		0		0		93		93
	2		28		4.4		29		3.7		14		3.7		0		87		28
	0		0		0		25		0		11		2		10		98		6
p-value	0.35		0.64		0.45		0.01		0.46		0.73		0.74		0.42		0.72		0.45

Supplemental Table S4:

Paraquat delays development in C10F3.4 (tm2679) mutant C. elegans.

The number of animals tested and the percentages of larval forms \pm the standard deviation from one replicate experiment (two plates) are shown for the summary data presented in Supplemental Figure S1.

Paraquat Tre	eatment for Wild-Type (N	egans					
Strain	Condition	n	% L1	% L2	% L3	% L4	%YA/ELA
N2	control	198±8.5	0	0	3.6±2.4	2.5±0.5	94±16.3
N2	0.1 mM PQ	44±8.5	0	3±4.4	52±59	45±63	0
N2	0.2 mM PQ	37±4.9	2	0	61.4±55	27.3±39	11.4±16
N2	1 mM Vit C	235±2.12	0	0	0	8.5±0.2	92±0.2
N2	0.1 mM PQ + 1 mM Vit C	200	0	0	0	0	100
N2	0.2 mM PQ + 1 mM Vit C	200	0	0	0	5±2	95±2
tm2679	control	200	0	0	0	0	100
tm2679	0.1 mM PQ	32±1.4	0	0	0	15±6	85±6
tm2679	0.2 mM PQ	109±3.5	0	0	55±4	22±1.4	23±5
tm2679	1 mM Vit C	200	0	0	0	0	100
tm2679	0.1 mM PQ + 1 mM Vit C	200	0	0	0	10	90
tm2679	0.2 mM PQ + 1 mM Vit C	200	0	0	0	5	95

Supplemental Table S5:

PL51 and *P54* transgenic strains treated with oxidative stress agents show developmental delays similar to wild-type (N2) and *pcm-1* mutant animals, respectively.

The number of animals tested and the percentages of larval forms \pm the standard deviation from three replicate experiments are shown for the summary data presented in Supplemental Figure S2.

Paraquat and Homocysteine Compound Treatment for wild-type (N2),												
PL51 PCM-1 Overexpressor and PL54 PCM-1 mutant C. elegans strains												
Strain	Condition	n	%L1	%L2	%L3	%L4	%YA/ELA					
N2	control	3200±187	0	0	0	0	100					
N2	0.2 mM Pq	834±31	0.4±1.5	26.8±7.1	66.4±5.4	6.34±6.4	0					
N2	20 mM Hcy	1000±58	1.9±3.25	98±3.25	0	0	0					
N2	20 mM HCTL	974±51	12.6±7	87±7	0	0	0					
PL51	control	152±16	0	0	0	97.3±4.7	2.7±4.7					
PL51	0.2 mM Pq	162±11	0	0	64.5±40	37±25	0					
PL51	20 mM Hcy	167±15	0	61±27	39±27	0	0					
PL51	20 mM HCTL	130±10	0	87±25	12.6±25	0	0					
PL54	control	97±9	0	0	0	98.7±3.4	1.3±3.4					
PL54	0.2 mM Pq	126±9	0	62.3±25	37.2±25	0	0					
PL54	20 mM Hcy	82±9	78±23	21±23	0	0	0					
PL54	20 mM HCTL	135±9	46±44	27±27	0	0	0					

Supplemental Table S6:

Effects of homocysteine and homocysteine derivatives on wild-type (N2) and *pcm-1* mutant *C. elegans* development.

Eggs (about 100) were transferred to duplicate NGM+OP50 plates containing 0, 10 mM and 20 mM homocysteine (Hcy), homocysteine thiolactone (HCTL), and homocystine (Hcy-Hcy) and the developmental stage of each worm was determined after 48 h at 25 °C as L1, L2, L3, and L4 larvae and as young adult/egg-laying adult (YA/ELA) nematodes. The experiment was replicated a total of five times. The percentage of nematodes in each developmental stage was determined for each plate from combined data of the untreated and the homocysteine, 10 mM and 20 mM homocysteine thiolactone treated groups (variable). The differences between the percentage values of the control and variable groups was tested in the two-tailed Student's t-test (unequal variance) and p-values were determined. The data for the *pcm-1* mutants are combined. No correction was made for multiple sample correction.

L1 contro		L1 v	ariable	L2 co	ontrol	L2 va	ariable	L3 c	ontrol	L3 va	riable	L4 co	ontrol	L4 v	ariable	YA c	ontrol	YA	variable
N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant	N2	mutant
0	0	0	0	0	0	39	13	3	14	39	50	20	0	0	0	78	86	21	38
0	0	0	48	0	0	8	27	0	0	14	0	5	20	12	17	95	80	66	7
0	0	19	71	0	0	42	0	1	2	21	10	3	35	0	0	96	64	18	20
0	0	0	36	0	0	93	48	1	0	0	0	0	10	7	12	99	90	0	4
0	0	12	29	3	0	69	9	6	0	5	30	10	0	10	0	81	100	4	32
0	0	0	0	0	0	28	0	0	0	47	25	0	0	2	0	100	100	23	75
0	0	15	14	0	0	10	43	0	9	34	0	36	30	7	0	64	62	35	42
0	0	18	100	0	0	59	0	2	4	24	0	1	22	0	0	97	74	0	0
0	0	0	67	0	0	0	20	17	0	1	0	21	61	0	13	62	39	99	0
0	0	0	14	3.2	0	0	43	6.4	9	24	0	17	30	24	0	73	62	53	42
0	0	4	0	0	0	73	36	0	0	16	15.3	0	0	0	19	100	100	7	31
0	3	17	42	0	3	83	39	3	8	0	3	6	15	0	0	91	70	0	16
0	0	64	0	0	0	31	54	1	0	5	21	2	42	0	0	97	58	0	26
0	0	0	0	7	0	0	0	11	0	18	5	12	0	21	17	71	100	61	78
0	0	0	13	0	0	64	13	0	0	10	0	13	30	0	26	88	70	27	47
	9		20		9		56		22		0		0		0		59		24
	0		65		0		15		15		19		9		0		76		0
	0		96		0		4		11		0		46		0		42		0
	0		2		0		20		0		44		13		13		87		22
	0		65		0		15		15		19		9		0		76		0
	0		0		0		8		15		42		21		0		63		50
	0		94		0		2		0		2		71		0		29		3
	0		67		0		23		0		2		0		0		100		8
	0		28		0		45		0		27		18		0		82		0
	0		0		0		30		0		15		45		20		55		35
	0		0		0		76		33		0		0		0		67		24
	0		100		0		0		0		0		0		0		100		0
	0		100		0		0		0		0		0		0		100		0
	0		28		0		56		0		17		46		0		53.7		0
	0		100		0		0		0		0		0		0		100		0
p-value	0.21		0.001		0.44		0.08		0.36		0.23		0.05		0.71		0.03		0.44

Supplemental Table S7:

Effects of oxidative stress agents on wild-type (N2) and *pcm-1* mutant *C. elegans* development.

The number of animals tested and the percentages of larval forms \pm the standard deviation from four to five replicate experiments are shown for the summary data presented in Figures 3, 4, and 5.

Paraquat Treatm							
Strain	Condition	n	%L1	%L2	%L3	%L4	%YA/ELA
N2	control	523±60	0	0.8±1.7	7.2±11.9	3.3±4.7	88.5±16.3
N2	0.1 mM PQ	206±35	0	2±3	17.5±15	15.9±19	64±37
N2	0.2 mM PQ	412±82	6.5±8.7	4.5±3.1	23±21	15±26	51.8±34
N2	1 mM Vit C	491±95	0	0	0	0±4.5	100±4.5
N2	0.1 mM PQ + 1 mM Vit C	290±92	0	0	0	9±5.2	91±5.2
N2	0.2 mM PQ + 1 mM Vit C	243±103	0	0	0	5±15	95±14.6
pcm-1 mutants	control	1233±169	0.25±0.7	1.8±2.5	2.1±3	4.3±3.6	92±6.6
pcm-1 mutants	0.1 mM PQ	226±28	4.7±9.1	8.3±8.8	12.2±17	19±15	56±34
pcm-1 mutants	0.2 mM PQ	618±118	9.4±11.2	30±25	18±22	11±28	33±39
pcm-1 mutants	1 mM Vit C	857±198	0	0	0	0.4±1.1	99.6±1.1
pcm-1 mutants	0.1 mM PQ + 1 mM Vit C	491±204	0	0	0	7.2±8	92.8±7.9
pcm-1 mutants	0.2 mM PQ + 1 mM Vit C	863±208	0	0	0.9±2.3	14±27	84.9±26
Homocysteine T	reatment for Wild-Type (N2)	and pcm-1	mutant C.	elegans			
Strain	Condition	n	%L1	%L2	%L3	%L4	%YA/ELA
N2	control	503±59	0	0.6±1.3	2.2±2.4	7.6±7.8	90±9.6
N2	10 mM Hcy	210±27	1.6±3.6	10.4±6.1	14.6±10.4	12.2±15	61±18
N2	20 mM Hcy	117±10	6.2±8.8	50.2±32	15.8±15	6±5.5	22±26
N2	10 mM HCTL	395±45	6.6±9	19.4±25	26±17	6.6±10	42±37
N2	20 mM HCTL	201±18	17±27	50±34	10±7.5	4.2±9	19±26
N2	10 mM Hcy-Hcy	338±69	0	0.6±1.4	5.1±7.2	15±15	79±18
N2	20 mM Hcy-Hcy	245±27	0	1.4±3.3	3±4.6	6.6±5.8	89.4±11
pcm-1 mutants	control	656±118	0	0	3.2±5	20±20	77±19
pcm-1 mutants	10 mM Hcy	323±13	5.1±8	7.8±6.7	11.8±12	20±14	55±25
pcm-1 mutants	20 mM Hcy	153±15	41±34	18±18	13±18	5±7	24±25
pcm-1 mutants	10 mM HCTL	376±33	26±34	26±21	12±15	8±10	27±24
pcm-1 mutants	20 mM HCTL	351±34	46±44	27±27	12±14	2±7	13±19
pcm-1 mutants	10 mM Hcy-Hcy	278±16	1.5±3	1.5±3.2	7±8.5	16±18	74±21
pcm-1 mutants	20 mM Hcy-Hcy	194±17	0	0	6±13	19±29	75±28
Vitamin C Preve	nts The Developmental Dela	y Induced b	y Homocy	steine Th	niolactone	in	-
Wild-Type (N2) a	nd pcm-1 mutant C. elegan	S					
Strain	Condition	n	%L1	%L2	%L3	%L4	%YA/ELA
N2	control	523±60	0	0.66±1.5	1.4±1.9	1.1±1.6	97±4.6
N2	1 mM Vit C	491±95	0	0	0	2.25±4.5	98±4.5
N2	10 mM HCTL	330±42	0	8.8±10.2	56±18	30±22	6.25±7
N2	10 mM HCTL + 1 mM Vit C	376±101	0	0	0.3±0.6	0	99.7±0.6
N2	20 mM HCTL	550±57	0	39±30	39±20	15±15	7±11
N2	20 mM HCTL + 1 mM Vit C	537±68	0	0	1.5±2.4	9.6±8	89±10
pcm-1 mutants	control	1209±174	0.2±0.6	0.5±1.5	0.6±1.3	4.4±3.8	94±4.5
pcm-1 mutants	1 mM Vit C	857±198	0	0	0	0.4±1.1	99.6±1.1
pcm-1 mutants	10 mM HCTL	441±131	0	30±32	39±16	26±23	5±9
pcm-1 mutants	10 mM HCTL + 1 mM Vit C	713±194	0	0	0	4.6±7	95.4±7
pcm-1 mutants	20 mM HCTL	845±205	34±38	39±26	15±13	4±5	13±13
pcm-1 mutants	20 mM HCTL + 1 mM Vit C	1098±180	0	0.14±0.4	7.6±14	13±22	79±36

Supplemental Figures

Supplemental Figure S1:

Paraquat delays development of C10F3.4 (tm2679) mutant C. elegans.

Eggs were transferred to each of two NGM+OP50 plates containing 0, 0.1 mM and 0.2 mM paraguat (PQ) in the presence and absence of 1 mM vitamin C at 25 °C and were then scored for larval development after 48 h as previously mentioned in Figure 3. Data from one replicate experiment are shown. A total of 198 wild-type (data not shown) and 200 tm2679 mutant control animals were analyzed. For the paraguat experiments, 44 and 37 wild-type animals and 32 and 109 tm2679 mutant animals were analyzed following treatment with 0.1 mM paraguat and 0.2 mM paraguat, respectively. For the paraguat plus vitamin C experiments, 200 wild-type animals and 200 pcm-1 mutant animals were analyzed following treatment with 0.1 mM paraguat + 1 mM vitamin C and 0.2 mM paraguat + 1 mM vitamin C each. The total number of animals analyzed following treatment with 1 mM vitamin C was 235 (wild-type) and 200 (pcm-1 mutant). No significant statistical difference was observed between the wild-type and tm2679 mutant nematodes following treatment with paraguat or paraguat and vitamin C as determined by the two-tailed Student's T-test of unequal variance. Standard deviations along with numerical values for each developmental stage are provided in Supplemental Table 4.

Supplemental Figure S2:

PL51 (PCM-1 overexpressing) and *PL54* (mutant PCM-1 overexpressing) transgenic strains treated with oxidative stress agents show developmental delays similar to wild-type (N2) and *pcm-1* mutant animals, respectively.

Upper panel. *PL51* PCM-1 overexpressor strain shows a developmental delay similar to wild-type (N2) nematodes. Eggs were transferred to each of two NGM+OP50 plates containing 0, 0.2 mM paraquat, 20 mM homocysteine (Hcy), and 20 mM HCTL at 25 °C and were then scored for larval development after 48 h as previously mentioned in Figure 3 and Figure 4. Data averaged from three replicate experiments are shown. A total of 3200 wild-type and 152 GFP-positive *PL51* transgenic control animals were analyzed. For the 0.2 mM paraquat experiment, 834 wild-type animals and 162 GFP-positive *PL51* transgenic animals were analyzed. 1000 and 974 wild-type animals and 167 and 130 GFP-positive *PL51* transgenic animals were examined following treatment with 20 mM Hcy and 20 mM HCTL, respectively. Statistically significant differences in developmental delay compared to the wild-type animals treated under the same conditions are noted (two-tailed Student's T-test of unequal variance: *p<0.05, **p<0.0005). Standard deviations along with numerical values for each developmental stage are provided in Supplemental Table 5.

Lower panel. *PL54* mutant PCM-1 overexpressor strain shows a developmental delay similar to *pcm-1* mutant nematodes. Eggs were transferred to each of two NGM+OP50 plates containing 0, 0.2 mM paraquat, 20 mM homocysteine (Hcy), and 20 mM HCTL at 25 °C and were then scored for larval development after 48 h as previously mentioned in Figure 2 and Figure 3. Data averaged from three replicate experiments are shown. The total amounts of wild-type nematodes treated are mentioned above. A total of 97 GFP-positive *PL54* transgenic control animals were analyzed. For the 0.2 mM paraquat experiment, 126 GFP-positive *PL54* transgenic animals were examined following treatment with 20 mM Hcy and 20 mM HCTL, respectively. Statistically significant differences in developmental delay compared to the wild-type animals (data not shown) treated under the same conditions are noted (two-tailed Student's T-test of unequal variance: *p<0.05, **p<0.0005). Standard deviations along with numerical values for each developmental stage are provided in Supplemental Table 5.

