# Towards extracellular Ca<sup>2+</sup> sensing by MRI: synthesis and calciumdependent <sup>1</sup>H and <sup>17</sup>O relaxation studies of two novel bismacrocyclic ligands

## Kirti Dhingra,<sup>a</sup> Petra Fousková,<sup>b</sup> Goran Angelovski,<sup>a</sup> Martin E. Maier,<sup>c</sup> Nikos K. Logothetis,<sup>a,d</sup> Éva Tóth\*b

<sup>a</sup> Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany

<sup>b</sup> Centre de Biophysique Moléculaire, CNRS, 45071 Orléans Cedex 2, France

<sup>c</sup> Institute für Organische Chemie, Universität Tübingen, Germany

<sup>d</sup> Imaging Science and Biomedical Engineering, University of Manchester, Manchester, U.K.

**Appendix.** Equations used in the analysis of <sup>17</sup>O NMR and <sup>1</sup>H NMRD data. **Table S1.** Proton relaxivities  $(r_1 / \text{mM}^{-1}\text{s}^{-1})$  of  $\text{Gd}_2\text{L}^1$  in the absence of  $\text{Ca}^{2+}$ ,  $c(\text{Gd}^{3+})=5.1 \text{ mM}$ , pH=6.25, at 25 and 37°C.

**Table S2.** Proton relaxivities  $(r_1 / \text{mM}^{-1}\text{s}^{-1})$  of  $\text{Gd}_2\text{L}^1$  in the presence of  $\text{Ca}^{2+}$ ,  $c(\text{Gd}^{3+})=3.2 \text{ mM}$ , c(Ca<sup>2+</sup>)=4.4 mM, pH=7, at 15.5, 25 and 37°C.

**Table S3.** Variable temperature reduced transverse and longitudinal  ${}^{17}$ O relaxation rates of Gd<sub>2</sub>L<sup>1</sup> in the absence of  $Ca^{2+}$ ,  $c(Gd^{3+})=51.8$  mM, pH=7,  $P_m=4.00\cdot10^{-4}$  at 11.75 T. Reference was acidified H<sub>2</sub>O, pH=3.4.

**Table S4.** Variable temperature reduced transverse and longitudinal <sup>17</sup>O relaxation rates of  $Gd_2L^1$  in the presence of 1M Ca<sup>2+</sup>, c(Gd<sup>3+</sup>)=45.6 mM, pH=7,  $P_m=5.41 \cdot 10^{-4}$  at 11.75 T. Reference was acidified 1M CaCl<sub>2</sub>.

**Table S5.** Relaxometric Ca<sup>2+</sup> titration of  $Gd_2L^1$  at 25°C, pH neutral and 11.75 T.

**Table S6.** Relaxometric Ca<sup>2+</sup> titration of  $Gd_2L^2$  at 25°C, pH neutral and 11.75 T. **Table S7.** Relaxometric Mg<sup>2+</sup> titration of  $Gd_2L^1$  at 25°C, pH neutral and 11.75 T.

**Table S8.** Luminescence lifetimes measurements on  $Eu_2L^1$  at 25°C, pH neutral, and the calculated hydration numbers *a*.

Figure S1. Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 50°C. Figure S2. Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 37°C. Figure S3. Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 25°C.

**Figure S4.** Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 15.5°C.

**Table S9.** Fitted parameters of  $Gd_2L^1$  in the absence of  $Ca^{2+}$ . The underlined parameters were fixed during the fitting.

**Table S10.** Fitted parameters of  $Gd_2L^1$  in the presence of 1M  $Ca^{2+}$ . The underlined parameters were fixed during the fitting.

**Figure S5.** IR spectrum of the ligand  $L^1$ .

**Figure S6.** IR spectrum of  $Gd_2L^1$  complex.

**Figure S7.** <sup>1</sup>H NMR spectrum of the compound 6a.

**Figure S8.** <sup>13</sup>C NMR spectrum of the compound 6a.

**Figure S9.** <sup>1</sup>H NMR spectrum of the ligand  $L^1$ .

Figure S10. <sup>13</sup>C NMR spectrum of the ligand L<sup>1</sup>.

**Figure S11.** <sup>1</sup>H NMR spectrum of the ligand  $L^2$ .

**Figure S12.** <sup>13</sup>C NMR spectrum of the ligand  $L^2$ .

**Figure S13.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of the compound 6a.

Figure S14. <sup>1</sup>H-<sup>13</sup>C HSOC spectrum of the compound 6a.

## **Equations.**

## <sup>17</sup>O NMR relaxation:

From the measured <sup>17</sup>O NMR relaxation rates of the paramagnetic solutions,  $1/T_1$  and  $1/T_2$ , and of the acidified water reference,  $1/T_{IA}$  and  $1/T_{2A}$ , one can calculate the reduced relaxation rates,  $1/T_{Ir}$ ,  $1/T_{2r}$  (Eq. [1] and [2]), where  $1/T_{Im}$ ,  $1/T_{2m}$  are the relaxation rates of the bound water and  $\Delta \omega_m$  is the chemical shift difference between bound and bulk water,  $\tau_m$  is the mean residence time or the inverse of the water exchange rate  $k_{ex}$  and  $P_m$  is the mole fraction of the bound water.<sup>1,2</sup>

$$\frac{1}{T_{1r}} = \frac{1}{P_m} \left[ \frac{1}{T_1} - \frac{1}{T_{1A}} \right] = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1OS}}$$
<sup>[1]</sup>

$$\frac{1}{T_{2r}} = \frac{1}{P_m} \left[ \frac{1}{T_2} - \frac{1}{T_{2A}} \right] = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2} + \frac{1}{T_{2OS}}$$
[2]

The terms  $I/T_{10S}$  and  $I/T_{20S}$  describe relaxation contributions from water molecules not directly bound to the paramagnetic centre. In previous studies it has been shown that <sup>17</sup>O outer sphere relaxation terms due to water molecules freely diffusing on the surface of Gd-polyaminocarboxylate complexes are negligible. For complexes with electronegative groups relaxation terms due to 2<sup>nd</sup> sphere water molecules can however be important for longitudinal relaxation  $I/T_{1r}$  and have therefore to be included.

$$\frac{1}{T_{1r}} = \frac{1}{T_{1r}^{1st}} + \frac{1}{T_{1r}^{2nd}} = \frac{1}{T_{1m} + \tau_m} + \frac{1}{T_{1r}^{2nd}}$$
[3]

$$\frac{1}{T_{2r}} = \frac{1}{T_{2r}^{1st}} = \frac{1}{\tau_m} \frac{T_{2m}^{-2} + \tau_m^{-1} T_{2m}^{-1} + \Delta \omega_m^2}{\left(\tau_m^{-1} + T_{2m}^{-1}\right)^2 + \Delta \omega_m^2}$$
[4]

First sphere contribution to <sup>17</sup>O relaxation:

The <sup>17</sup>O longitudinal relaxation rates in Gd(III) solutions are the sum of the contributions of the dipole-dipole and quadrupolar (in the approximation developed by Halle for non-extreme narrowing conditions) mechanisms as expressed by Eq. [6]-[7], where  $\gamma_s$  is the electron and  $\gamma_I$  is the nuclear gyromagnetic ratio ( $\gamma_s = 1.76 \times 1011 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$ ,  $\gamma_I = -3.626 \times 10^7 \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$ ),  $r_{GdO}$  is the effective distance between the electron charge and the <sup>17</sup>O nucleus, *I* is the nuclear spin (5/2 for <sup>17</sup>O),  $\chi$  is the quadrupolar coupling constant and  $\eta$  is an asymmetry parameter:

$$\frac{1}{T_{1m}} = \frac{1}{T_{1dd}} + \frac{1}{T_{1q}}$$
[5]

$$\frac{1}{T_{1dd}} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_I^2 \gamma_S^2}{r_{6dO}^6} S\left(S+1\right) \left[3J\left(\omega_I; \tau_{d1}\right) + 7J\left(\omega_S; \tau_{d2}\right)\right]; \quad J\left(\omega; \tau\right) = \frac{\tau}{1+\left(\omega\tau\right)^2}$$
[6]

$$\frac{1}{\tau_{d1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}} + \frac{1}{\tau_{RO}} + \frac{1}{\tau_{RO}} + \frac{1}{T_{1q}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2(2I-1)} \chi^2 \left(1 + \frac{\eta^2}{3}\right) \left[0.2J_1(\omega_I;\tau_{RO}) + 0.8J_2(\omega_I;\tau_{RO})\right]; \quad J_n(\omega;\tau) = \frac{\tau}{1 + (n\omega\tau)^2}$$
[7]

In the transverse relaxation the scalar contribution,  $1/T_{2sc}$ , is dominating, Eq. [8].  $1/\tau_{s1}$  is the sum of the exchange rate constant and the electron spin relaxation rate.

$$\frac{1}{T_{2m}} \approx \frac{1}{T_{2SC}} = \frac{S(S+1)}{3} \left(\frac{A}{\hbar}\right)^2 \tau_{S1}$$
[8]

$$\frac{1}{\tau_{S1}} = \frac{1}{\tau_m} + \frac{1}{T_{1e}}$$
[9]

Second sphere contribution to <sup>17</sup>O relaxation:

$$\frac{1}{T_1^{2nd}} \approx \frac{q^{2nd}}{q^{1st}} \frac{1}{T_{1m}^{2nd}} = \frac{q^{2nd}}{q^{1st}} \left( \frac{1}{T_{1dd}^{2nd}} + \frac{1}{T_{1q}^{2nd}} \right)$$
[10]

$$\frac{1}{T_{1dd}^{2nd,O}} = C_{dd}^{2nd,O} \left( \frac{3\tau_{d1}^{2nd,O}}{1 + (\omega_{1}\tau_{d1}^{2nd,O})^{2}} + \frac{7\tau_{d2}^{2nd,O}}{1 + (\omega_{5}\tau_{d2}^{2nd,O})^{2}} \right)$$
[11]

$$C_{dd}^{2nd,O} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_{17_O}^2 \gamma_S^2}{\left(r_{GdO}^{2nd}\right)^6} S(S+1)$$
[12]

$$\frac{1}{T_{lq}^{2nd}} = \frac{3\pi^2}{10} \frac{2I+3}{I^2 (2I-1)} \chi^2 \left(1+\eta^2/3\right) \left(\frac{0.2\tau^{2nd,O}}{1+\left(\omega_1 \tau^{2nd,O}\right)^2} + \frac{0.8\tau^{2nd,O}}{1+\left(2\omega_1 \tau^{2nd,O}\right)^2}\right)$$
[12]

$$\frac{1}{\tau^{0,2nd}} = \frac{1}{\tau_{a}} + \frac{1}{\tau_{1}^{0}} \cong \frac{1}{\tau_{1}^{0}}$$
[13]

$$\frac{1}{\tau_{di}^{2nd,O}} = k_{ex}^{2nd} + \frac{1}{\tau^{0,2nd}} + \frac{1}{T_{ie}}$$
[14]

## <sup>1</sup>H NMRD:

The measured longitudinal proton relaxation rate,  $R_1^{obs}$  is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq. [15], where  $r_1$  is the proton relaxivity:

$$R_{1}^{obs} = R_{1}^{d} + R_{1}^{p} = R_{1}^{d} + r_{1} \left[ Gd^{3+} \right]$$
[15]

The relaxivity is here given by the sum of inner sphere, second sphere and outer sphere contributions:  $r_1 = r_{1is} + r_{1,2nd} + r_{1os}$ [16]

Inner sphere <sup>1</sup>H relaxation:

The inner sphere term is given in Eq. [17], where  $q^{lst}$  is the number of inner sphere water molecules.<sup>3</sup>

$$r_{\rm lis} = \frac{1}{1000} \times \frac{q^{\rm lst}}{55.55} \times \frac{1}{T_{\rm lm}^{\rm H} + \tau_{\rm m}}$$
[17]

The longitudinal relaxation rate of inner sphere protons,  $l/T_{Im}^{H}$  is expressed by Eq. [18], where  $r_{GdH}$  is the effective distance between the electron charge and the <sup>1</sup>H nucleus,  $\omega_{I}$  is the proton resonance frequency and  $\omega_{S}$  is the Larmor frequency of the Gd(III) electron spin.

$$\frac{1}{T_{1m}^{H}} = \frac{2}{15} \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\hbar^{2} \gamma_{I}^{2} \gamma_{S}^{2}}{r_{6dH}^{6}} S(S+1) \left[ 3J(\omega_{I};\tau_{d1}) + 7J(\omega_{S};\tau_{d2}) \right]$$
[18]

$$J(\omega;\tau_{di}) = \left(\frac{S^2 \tau_{dig}}{1 + \omega^2 \tau_{dig}^2} + \frac{(1 - S^2) \tau_{di}}{1 + \omega^2 \tau_{di}^2}\right); \quad i = 1,2$$
[19]

$$\frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau_g} + \frac{1}{T_{ie}}; \quad \frac{1}{\tau_{dig}} = \frac{1}{\tau_m} + \frac{1}{\tau^H} + \frac{1}{T_{ie}}; \quad i = 1, 2$$
[20]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$
[21]

The spectral density functions are given by Eq. [19].

Second sphere <sup>1</sup>H relaxation:

$$\mathbf{r}_{1}^{2nd} = \frac{1}{1000} \times \frac{\mathbf{q}^{2nd}}{55.55} \times \frac{1}{\mathbf{T}_{1dd}^{2nd,\mathrm{H}} + \tau_{m}^{2nd}} \cong \frac{1}{1000} \times \frac{\mathbf{q}^{2nd}}{55.55} \times \frac{1}{\mathbf{T}_{1dd}^{2nd,\mathrm{H}}}$$
[22]

$$\frac{1}{T_{ldd}^{2nd,H}} = C_{dd}^{2nd,0} \left( \frac{3\tau_{d1}^{2nd,H}}{1 + (\omega_l \tau_{d1}^{2nd,H})^2} + \frac{7\tau_{d2}^{2nd,H}}{1 + (\omega_s \tau_{d2}^{2nd,H})^2} \right)$$
[23]

$$C_{dd}^{2nd,H} = \frac{2}{15} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{h^2 \gamma_{^1H}^2 \gamma_S^2}{(r_{cdd}^{2nd})^6} S(S+1)$$
[24]

$$\frac{1}{\tau^{2nd,H}} = k_{ex}^{2nd} + \frac{1}{\tau^{H}} + \frac{1}{T}$$
[25]

$$\frac{1}{\tau^{\rm H}} = \frac{1}{\tau_{\rm g}} + \frac{1}{\tau_{\rm l}^{\rm H}}$$
[26]

Outer sphere <sup>1</sup>H relaxation:

The outer-sphere contribution can be described by Eq. [27] where  $N_A$  is the Avogadro constant, and  $J_{os}$  is its associated spectral density function.<sup>4,5</sup>

$$r_{1os} = \frac{32N_A \pi}{405} \left(\frac{\mu_0}{4\pi}\right)^2 \frac{\hbar^2 \gamma_S^2 \gamma_I^2}{a_{GdH} D_{GdH}} S(S+1) \left[ 3J_{os}(\omega_I; T_{1e}) + 7J_{os}(\omega_S; T_{2e}) \right]$$
[27]

$$J_{os}(\omega, T_{je}) = \operatorname{Re}\left[\frac{1 + \frac{1}{4}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2}}{1 + \left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{1/2} + \frac{4}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right) + \frac{1}{9}\left(i\omega\tau_{GdH} + \frac{\tau_{GdH}}{T_{je}}\right)^{3/2}}\right]; \quad j = 1, 2$$

$$\tau_{GdH} = \frac{a_{GdH}^{2}}{D_{GdH}}$$
[29]

 $a_{GdH}$  is the distance of closes approach and  $D_{GdH}$  is the diffusion coefficient for the diffusion of a water proton relative to the Gd(III) complex.

Electron spin relaxation:

The longitudinal and transverse electronic relaxation rates,  $1/T_{1e}$  and  $1/T_{2e}$  are described by Solomon-Bloembergen-Morgan theory modified by Powell (Eqs. [30]-[31]), where  $\tau_V$  is the correlation time for the modulation of the zero-field-splitting interaction.

$$\left(\frac{1}{T_{1e}}\right)^{ZFS} = \frac{1}{25}\Delta^{2}\tau_{v}\left\{4S\left(S+1\right)-3\right\}\left(\frac{1}{1+\omega_{S}^{2}\tau_{v}^{2}}+\frac{4}{1+4\omega_{S}^{2}\tau_{v}^{2}}\right)$$
[30]

$$\left(\frac{1}{T_{2e}}\right)^{2FS} = \Delta^2 \tau_v \left(\frac{5.26}{1 + 0.372\omega_s^2 \tau_v^2} + \frac{7.18}{1 + 1.24\omega_s \tau_v}\right)$$
[31]

Temperature dependences of water exchange rates and correlation times:

The exchange rates are supposed to follow the Eyring equation. In Eq. **[32]**  $\Delta S^{\ddagger}$  and  $\Delta H^{\ddagger}$  are the entropy and enthalpy of activation for the water exchange process, and  $k_{ex}^{298}$  is the exchange rate at 298.15 K. In Eq. **[33]**  $\Delta H^{\ddagger 2nd}$  is the enthalpy of activation for the second sphere water exchange process and  $k_{ex}^{2nd,298}$  is the corresponding exchange rate at 298 K.

$$k_{ex} = \frac{1}{\tau_m} = \frac{k_B T}{h} \exp\left\{\frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT}\right\} = \frac{k_{ex}^{298} T}{298.15} \exp\left\{\frac{\Delta H^{\ddagger}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[32]

$$k_{ex}^{2nd} = \frac{k_{ex}^{2nd,298}}{298.14} \exp\left\{\frac{\Delta H^{\ddagger 2nd}}{T} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[33]

All correlation times and the diffusion constant are supposed to obey an Arrhenius law:

$$\tau = \tau^{298} \exp\left\{\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right\}$$
[34]

$$D_{GdH} = D_{GdH}^{298} \exp\left\{\frac{E_{GdH}}{R} \left(\frac{1}{298.15} - \frac{1}{T}\right)\right\}$$
[35]

| $v (^{1}H)/MHz$ | 15.5°C | 25°C | 37°C |
|-----------------|--------|------|------|
| 0.010           | 10.0   | 7.45 | 5.89 |
| 0.0144          | -      | 7.43 | 5.86 |
| 0.0208          | -      | 7.46 | 5.84 |
| 0.0216          | 9.91   | -    | -    |
| 0.0298          | -      | 7.47 | 5.87 |
| 0.0428          | -      | 7.46 | 5.86 |
| 0.0465          | 9.88   | -    | -    |
| 0.0616          | -      | 7.49 | 5.88 |
| 0.0887          | -      | 7.47 | 5.85 |
| 0.10            | 9.85   | -    | -    |
| 0.127           | -      | 7.50 | 5.89 |
| 0.183           | -      | 7.45 | 5.80 |
| 0.216           | 9.83   | -    | -    |
| 0.264           | -      | 7.44 | 5.85 |
| 0.379           | -      | 7.40 | 5.81 |
| 0.465           | 9.35   | -    | -    |
| 0.546           | -      | 7.30 | 5.76 |
| 0.784           | -      | 7.27 | 5.74 |
| 1.00            | 9.14   | -    | -    |
| 1.13            | -      | 7.11 | 5.65 |
| 1.62            | -      | 6.92 | 5.45 |
| 2.15            | 8.65   | -    | -    |
| 2.34            | -      | 6.72 | 5.29 |
| 3.36            | -      | 6.40 | 5.08 |
| 4.64            | 7.80   | -    | -    |
| 4.83            | -      | 6.19 | 4.83 |
| 6.95            | -      | 5.98 | 4.62 |
| 10              | 7.56   | 5.72 | 4.24 |
| 12              | -      | 5.64 | 4.12 |
| 14              | -      | 5.59 | -    |
| 16              | -      | 5.56 | 4.01 |
| 18              | -      | 5.55 | -    |
| 20              | -      | 5.74 | 4.09 |
| 30              | -      | 5.94 | 4.14 |
| 40              | -      | 5.93 | 4.10 |
| 60              | -      | 5.95 | 4.07 |
| 200             | -      | 5.14 | 3.95 |
| 500             | -      | 3.40 | -    |

**Table S1.** Proton relaxivities  $(r_1 / \text{mM}^{-1}\text{s}^{-1})$  of  $\text{Gd}_2\text{L}^1$  in the absence of  $\text{Ca}^{2+}$ ,  $\text{c}(\text{Gd}^{3+})=5.1$  mM, pH=6.25, at 25 and 37°C.

**Table S2.** Proton relaxivities  $(r_1 / \text{mM}^{-1}\text{s}^{-1})$  of  $\text{Gd}_2\text{L}^1$  in the presence of  $\text{Ca}^{2+}$ ,  $c(\text{Gd}^{3+})=3.2 \text{ mM}$ ,  $c(\text{Ca}^{2+})=4.4 \text{ mM}$ , pH=7, at 15.5, <u>25 and 37°C</u>.

| ν ( <sup>1</sup> H)/MHz | 15.5°C | 25°C |
|-------------------------|--------|------|
| 0.010                   | 11.56  | 8.10 |
| 0.0144                  | -      | 8.10 |
| 0.0208                  | -      | 8.10 |
| 0.0298                  | -      | 8.10 |
| 0.0398                  | 11.01  | -    |
| 0.0428                  | -      | 8.10 |
| 0.0616                  | -      | 8.10 |
| 0.0887                  | -      | 8.10 |
| 0.127                   | -      | 8.10 |
| 0.158                   | 11.17  | -    |
| 0.183                   | -      | 8.10 |
| 0.264                   | -      | 8.00 |
| 0.379                   | -      | 8.00 |
| 0.546                   | -      | 7.97 |
| 0.784                   | -      | 7.82 |
| 1.13                    | -      | 7.65 |
| 1.62                    | -      | 7.44 |
| 2.34                    | -      | 7.16 |
| 2.51                    | 9.49   | -    |
| 3.36                    | -      | 6.88 |
| 4.83                    | -      | 6.56 |
| 6.95                    | -      | 6.40 |
| 10                      | 8.7    | 6.19 |
| 11.5                    | -      | 6.08 |
| 13.2                    | -      | 5.97 |
| 14                      | -      | -    |
| 15.2                    | -      | 5.97 |
| 16                      | -      | -    |
| 17.0                    | -      | -    |
| 17.4                    | -      | 5.95 |
| 20                      | -      | 6.13 |
| 30                      | -      | 6.39 |
| 40                      | -      | 6.38 |
| 60                      | -      | 6.31 |
| 200                     | -      | 5.76 |
| 500                     | -      | 3.98 |

| t / °C | T / K | 1000/T / K <sup>-1</sup> | P <sub>m</sub> | $T_1$ (Gd)/s | $T_1$ (ref)/s | $T_2(Gd)/s$ | $T_2(ref)/s$ | $\ln(1/T_{1r})$ | $\ln(1/T_{2r})$ |
|--------|-------|--------------------------|----------------|--------------|---------------|-------------|--------------|-----------------|-----------------|
| 3.75   | 276.9 | 3.61                     | 4.00E-04       | 2.93E-03     | 3.65E-03      | 2.09E-03    | 3.29E-03     | 12.03           | 12.98           |
| 10.45  | 283.6 | 3.53                     | 4.00E-04       | 3.74E-03     | 4.51E-03      | 2.02E-03    | 4.66E-03     | 11.64           | 13.46           |
| 16.65  | 289.8 | 3.45                     | 4.00E-04       | 4.26E-03     | 5.66E-03      | 2.04E-03    | 5.70E-03     | 11.88           | 13.57           |
| 25.45  | 298.6 | 3.35                     | 4.00E-04       | 5.65E-03     | 7.06E-03      | 2.36E-03    | 6.74E-03     | 11.39           | 13.44           |
| 35.45  | 308.6 | 3.24                     | 4.00E-04       | 7.03E-03     | 8.92E-03      | 2.75E-03    | 8.88E-03     | 11.23           | 13.35           |
| 46.75  | 319.9 | 3.13                     | 4.00E-04       | 9.07E-03     | 1.16E-02      | 3.42E-03    | 1.18E-02     | 10.99           | 13.16           |
| 59.25  | 332.4 | 3.01                     | 4.00E-04       | 1.20E-02     | 1.45E-02      | 4.83E-03    | 1.43E-02     | 10.47           | 12.75           |
| 70.55  | 343.7 | 2.91                     | 4.00E-04       | 1.45E-02     | 1.75E-02      | 6.37E-03    | 1.72E-02     | 10.27           | 12.42           |

**Table S3.** Variable temperature reduced transverse and longitudinal <sup>17</sup>O relaxation rates of  $Gd_2L^1$  in the absence of  $Ca^{2+}$ ,  $c(Gd^{3+})=51.8$  mM, pH=7,  $P_m=4.00\cdot10^{-4}$  at 11.75 T. Reference was acidified H<sub>2</sub>O, pH=3.4.

**Table S4.** Variable temperature reduced transverse and longitudinal <sup>17</sup>O relaxation rates of  $Gd_2L^1$  in the presence of 1M  $Ca^{2+}$ ,  $c(Gd^{3+})=45.6$  mM, pH=7,  $P_m=5.41\cdot10^{-4}$  at 11.75 T. Reference was acidified 1M  $CaCl_2$ .

| t / °C | T / K | 1000/T / K <sup>-1</sup> | P <sub>m</sub> | <i>T</i> <sub>1</sub> (Gd)/s | $T_1$ (ref)/s | $T_2(Gd)/s$ | $T_2(ref)/s$ | $\ln(1/T_{1r})$ | $\ln(1/T_{2r})$ |
|--------|-------|--------------------------|----------------|------------------------------|---------------|-------------|--------------|-----------------|-----------------|
| 4.25   | 277.4 | 3.60                     | 5.41E-04       | 2.56E-03                     | 4.14E-03      | 1.36E-03    | 4.08E-03     | 12.38           | 13.71           |
| 10.55  | 283.7 | 3.52                     | 5.41E-04       | 2.86E-03                     | 5.06E-03      | 1.39E-03    | 4.93E-03     | 12.25           | 13.77           |
| 17.95  | 291.1 | 3.44                     | 5.41E-04       | 3.78E-03                     | 6.16E-03      | 1.46E-03    | 5.97E-03     | 12.09           | 13.77           |
| 24.85  | 298.0 | 3.36                     | 5.41E-04       | 4.05E-03                     | 7.24E-03      | 1.45E-03    | 6.76E-03     | 11.94           | 13.81           |
| 34.15  | 307.3 | 3.25                     | 5.41E-04       | 5.23E-03                     | 9.16E-03      | 1.67E-03    | 8.94E-03     | 11.76           | 13.71           |
| 50.35  | 323.5 | 3.09                     | 5.41E-04       | 6.98E-03                     | 1.29E-02      | 1.95E-03    | 1.17E-02     | 11.44           | 13.58           |
| 65.25  | 338.4 | 2.96                     | 5.41E-04       | 8.85E-03                     | 1.66E-02      | 2.48E-03    | 1.59E-02     | 11.16           | 13.35           |

| $c(Gd^{3+}) / mM$ | $c(Ca^{2+}) / mM$ | c(complex) / mM | $n(Ca^{2+}):n(complex)$ | $T_1 / \mathrm{ms}$ | $r_1 / \text{mmol}^{-1}\text{s}^{-1}$ |
|-------------------|-------------------|-----------------|-------------------------|---------------------|---------------------------------------|
| 7.4               | 0                 | 3.7             | 0.00                    | 39.67               | 3.36                                  |
| 7.05              | 0.88              | 3.525           | 0.25                    | 40.90               | 3.42                                  |
| 6.73              | 1.67              | 3.365           | 0.50                    | 42.51               | 3.44                                  |
| 6.43              | 2.4               | 3.215           | 0.75                    | 43.97               | 3.48                                  |
| 6.08              | 3.28              | 3.04            | 1.08                    | 46.04               | 3.51                                  |
| 5.77              | 4.06              | 2.885           | 1.41                    | 48.31               | 3.52                                  |
| 5.62              | 8.9               | 2.81            | 3.17                    | 48.92               | 3.57                                  |
| 5.41              | 15.72             | 2.705           | 5.81                    | 49.90               | 3.64                                  |
| 5.22              | 22.05             | 2.61            | 8.45                    | 51.35               | 3.66                                  |
| 4.99              | 43.56             | 2.495           | 17.46                   | 53.03               | 3.71                                  |
| 4.77              | 63.23             | 2.385           | 26.51                   | 53.40               | 3.85                                  |
| 4.58              | 81.27             | 2.29            | 35.49                   | 56.16               | 3.81                                  |
| 4.4               | 97.88             | 2.2             | 44.49                   | 58.63               | 3.79                                  |
| 4.07              | 127.44            | 2.035           | 62.62                   | 63.36               | 3.79                                  |
| 3.79              | 152.96            | 1.895           | 80.72                   | 67.45               | 3.82                                  |
| 3.552             | 175.22            | 1.776           | 98.66                   | 71.79               | 3.82                                  |
| 3.24              | 203.73            | 1.62            | 125.76                  | 77.92               | 3.85                                  |

**Table S5.** Relaxometric  $Ca^{2+}$  titration of  $Gd_2L^1$  at 25°C, pH 7 and 11.75 T.

**Table S6.** Relaxometric  $Ca^{2+}$  titration of  $Gd_2L^2$  at 25°C, pH 7 and 11.75 T.

| $c(Gd^{3+}) / mM$ | $c(Ca^{2+}) / mM$ | c(complex) / mM | $n(Ca^{2+}):n(complex)$ | $T_1$ / | $r_1 / \text{mmol}^{-1}\text{s}^{-1}$ |
|-------------------|-------------------|-----------------|-------------------------|---------|---------------------------------------|
|                   |                   |                 |                         | ms      |                                       |
| 4.03              | 0                 | 2.015           | 0                       | 91.51   | 2.62                                  |
| 3.78              | 1.15              | 1.89            | 0.61                    | 94.04   | 2.72                                  |
| 3.56              | 2.16              | 1.78            | 1.21                    | 99.00   | 2.73                                  |
| 3.224             | 3.68              | 1.612           | 2.28                    | 104.7   | 2.85                                  |
| 3.06              | 4.43              | 1.53            | 2.90                    | 113.5   | 2.76                                  |
| 2.91              | 5.10              | 1.455           | 3.51                    | 117.3   | 2.80                                  |
| 2.63              | 6.40              | 1.315           | 4.87                    | 128.0   | 2.83                                  |
| 2.52              | 14.3              | 1.26            | 11.35                   | 131.1   | 2.88                                  |
| 2.33              | 28.2              | 1.165           | 24.21                   | 140.5   | 2.89                                  |
| 2.16              | 61.9              | 1.08            | 57.31                   | 151.5   | 2.89                                  |

| $\frac{100000}{c(Gd^{3+})}$ | $c(M\sigma^{2+})/$ | $c(Ca^{2+})/$ | c(complex)/ | $n(M\sigma^{2+})\cdot n(complex)$ | $n(Ca^{2+})\cdot n(complex)$ | r1 /              |
|-----------------------------|--------------------|---------------|-------------|-----------------------------------|------------------------------|-------------------|
| mM                          | mM                 | mM            | mM          | n(ing ).n(complex)                | n(cu ).n(complex)            | $mmol^{-1}s^{-1}$ |
| 2.60                        | 0                  | 0             | 1 30        | 0.00                              | 0.00                         | 3 35              |
| 2.57                        | 1 21               | Ő             | 1 29        | 0.94                              | 0.00                         | 3 37              |
| 2.54                        | 2.38               | 0<br>0        | 1.27        | 1.87                              | 0.00                         | 3.37              |
| 2.48                        | 4.65               | 0             | 1.24        | 3.75                              | 0.00                         | 3.34              |
| 2.42                        | 6.82               | 0             | 1.21        | 5.64                              | 0.00                         | 3.41              |
| 2.34                        | 9.88               | 0             | 1.17        | 8.44                              | 0.00                         | 3.36              |
| 2.26                        | 12.74              | 0             | 1.13        | 11.27                             | 0.00                         | 3.51              |
| 2.17                        | 16.28              | 0             | 1.09        | 15.00                             | 0.00                         | 3.45              |
| 2.08                        | 19.54              | 0             | 1.04        | 18.79                             | 0.00                         | 3.43              |
| 2.00                        | 22.55              | 0             | 1.00        | 22.55                             | 0.00                         | 3.47              |
| 1.96                        | 22.12              | 1.86          | 0.98        | 22.57                             | 1.90                         | 3.54              |
| 1.93                        | 21.71              | 3.66          | 0.97        | 22.50                             | 3.79                         | 3.53              |
| 1.86                        | 20.94              | 7.05          | 0.93        | 22.52                             | 7.58                         | 3.59              |
| 1.79                        | 20.21              | 10.21         | 0.895       | 22.58                             | 11.41                        | 3.70              |
| 1.73                        | 19.54              | 13.16         | 0.865       | 22.59                             | 15.21                        | 3.71              |
| 1.68                        | 18.91              | 15.92         | 0.840       | 22.51                             | 18.95                        | 3.76              |
| 1.625                       | 18.32              | 18.51         | 0.813       | 22.55                             | 22.78                        | 3.78              |
| 1.58                        | 17.76              | 20.94         | 0.790       | 22.48                             | 26.51                        | 3.81              |
| 1.51                        | 16.99              | 24.3          | 0.755       | 22.50                             | 32.19                        | 3.86              |
| 1.42                        | 16.06              | 28.39         | 0.710       | 22.62                             | 39.99                        | 3.92              |
| 1.30                        | 14.655             | 34.55         | 0.650       | 22.55                             | 53.15                        | 3.90              |

**Table S7.** Relaxometric  $Mg^{2+}$  titration of  $Gd_2L^1$  at 25°C, pH 7 and 11.75 T.

| 2.                      |                     |                     |      |
|-------------------------|---------------------|---------------------|------|
| $n(Ca^{2+}):n(complex)$ | $	au_{ m H2O}$ / ms | $	au_{ m D2O}$ / ms | q    |
| 0                       | 0.325               | 0.407               | 0.44 |
| 0                       | 0.327               | 0.408               | 0.43 |
| 0                       | 0.329               | 0.409               | 0.41 |
| 0                       | 0.327               | 0.411               | 0.45 |
| 0                       | 0.329               | 0.408               | 0.40 |
| 2                       | 0.346               | 0.471               | 0.63 |
| 2                       | 0.348               | 0.471               | 0.60 |
| 2                       | 0.347               | 0.472               | 0.61 |
| 2                       | 0.346               | 0.469               | 0.61 |
| 2                       | 0.345               | 0.470               | 0.63 |
| 10                      | 0.389               | 0.595               | 0.77 |
| 10                      | 0.388               | 0.591               | 0.76 |
| 10                      | 0.390               | 0.594               | 0.76 |
| 10                      | 0.390               | 0.591               | 0.74 |
| 10                      | 0.389               | 0.591               | 0.76 |
| 20                      | 0.423               | 0.661               | 0.72 |
| 20                      | 0.424               | 0.665               | 0.73 |
| 20                      | 0.423               | 0.661               | 0.72 |
| 20                      | 0.419               | 0.661               | 0.75 |
| 20                      | 0.420               | 0.659               | 0.73 |
| 40                      | 0.461               | 0.729               | 0.66 |
| 40                      | 0.461               | 0.730               | 0.66 |
| 40                      | 0.462               | 0.729               | 0.65 |
| 40                      | 0.462               | 0.729               | 0.65 |
| 40                      | 0.459               | 0.728               | 0.67 |
| 80                      | 0.484               | 0.772               | 0.62 |
| 80                      | 0.483               | 0.775               | 0.63 |
| 80                      | 0.485               | 0.774               | 0.62 |
| 80                      | 0.485               | 0.774               | 0.62 |
| 80                      | 0.486               | 0.772               | 0.62 |

**Table S8.** Luminescence lifetimes measurements on  $\text{Eu}_2\text{L}^1$  at 25°C, pH neutral, and the calculated hydration numbers *q*.





**Figure S2.** Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 37°C.







**Figure S3.** Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 25°C.

**Figure S4.** Variable  $Ca^{2+}$  concentration UV-Vis studies on  $Eu_2L^1$  at 15.5°C.



17340

17320

| Parameter                                                    | $Gd_2L^1$       |
|--------------------------------------------------------------|-----------------|
| $k_{\rm ex}^{298} [10^6  {\rm s}^{-1}]$                      | 2.4±0.2         |
| $\Delta H^{\ddagger}$ [kJ mol <sup>-1</sup> ]                | 43.6±3.3        |
| $\Delta S^{\ddagger}$ [J mol <sup>-1</sup> K <sup>-1</sup> ] | +23.5           |
| $A/\hbar [10^6 \text{ rad s}^{-1}]$                          | <u>-3.8</u>     |
| $\tau_{ m RO}^{298}$ [ps]                                    | 349±47          |
| $E_R [kJ mol^{-1}]$                                          | 24±1            |
| ${\tau_{\rm V}}^{298}  [{\rm ps}]$                           | 20.6±2.7        |
| $E_V [kJ mol^{-1}]$                                          | <u>1</u>        |
| $\Delta^2 [10^{20} \text{ s}^{-2}]$                          | $0.46 \pm 0.10$ |
| $D^{298}_{GdH} [10^{-10} m^2 s^{-1}]$                        | 25±3            |
| E <sub>DGdH</sub> [kJ mol <sup>-1</sup> ]                    | 30±2            |
| $\delta g_{L}^{2} [10^{-1}]$                                 | $2.7 \pm 0.7$   |
| $	au_{ m RH}^{298}/ 	au_{ m RO}^{298} $                      | $0.76 \pm 0.12$ |
| r <sub>GdO</sub> [Å]                                         | <u>2.5</u>      |
| r <sub>GdH</sub> [Å]                                         | <u>3.1</u>      |
| r <sub>GdHouter</sub> [Å]                                    | <u>3.6</u>      |
| $\chi (1+\eta^2/3)^{1/2}$ [MHz]                              | <u>7.58</u>     |
| q                                                            | <u>0.4</u>      |
| q <sub>2nd</sub>                                             | <u>1</u>        |
| ${\tau_{\rm M}}^{298}_{ m 2nd}  [{ m ps}]$                   | <u>50</u>       |
| $\Delta H^{298}{}_{2nd}$ [kJ mol <sup>-1</sup> ]             | <u>35</u>       |
| $r^{2nd}_{GdH}$ [Å]                                          | <u>3.5</u>      |
| $r^{2nd}_{GdO}$ [Å]                                          | <u>4.1</u>      |

**Table S9.** Fitted parameters of  $Gd_2L^1$  in the absence of  $Ca^{2+}$ . The underlined parameters were fixed during the fitting.

| Parameter                                  | $Gd_2L^1 + Ca^{2+}$ |
|--------------------------------------------|---------------------|
| $k_{\rm ex}^{298} [10^6  {\rm s}^{-1}]$    | 7.5±1.6             |
| $\Delta H^{\ddagger} [kJ mol^{-1}]$        | <u>43.6</u>         |
| $\Delta S^{\ddagger} [J mol^{-1}K^{-1}]$   | +33.0               |
| $A/\hbar \ [10^6 \text{ rad s}^{-1}]$      | <u>-3.8</u>         |
| $\tau_{ m RO}^{298}$ [ps]                  | 1152±243            |
| $E_R [kJ mol^{-1}]$                        | 21±6                |
| ${\tau_{\rm V}}^{298}  [{\rm ps}]$         | $0.13 \pm 0.02$     |
| $E_V [kJ mol^{-1}]$                        | <u>1</u>            |
| $\Delta^2 [10^{20} \text{ s}^{-2}]$        | $0.50\pm0.05$       |
| $\delta g_{L}^{2} [10^{-2}]$               | <u>2.1</u>          |
| r <sub>GdO</sub> [Å]                       | <u>2.5</u>          |
| r <sub>GdH</sub> [Å]                       | <u>3.1</u>          |
| r <sub>GdHouter</sub> [Å]                  | <u>3.5</u>          |
| $\chi (1+\eta^2/3)^{1/2}$ [MHz]            | <u>7.58</u>         |
| q                                          | <u>0.7</u>          |
| $q_{2nd}$                                  | <u>1</u>            |
| ${\tau_{\rm M}}^{298}_{ m 2nd}  [{ m ps}]$ | <u>50</u>           |
| $\Delta H^{298}_{2nd}  [kJ  mol^{-1}]$     | <u>35</u>           |
| $r^{2\mathrm{nd}}_{\mathrm{GdH}}$ [Å]      | <u>3.5</u>          |
| $r^{2nd}_{GdO}$ [Å]                        | <u>4.1</u>          |

**Table S10.** Fitted parameters of  $Gd_2L^1$  in the presence of 1M  $Ca^{2+}$ . The underlined parameters were fixed during the fitting.

**Figure S5.** IR spectrum of the ligand  $L^1$ .















**Figure S9.** <sup>1</sup>H NMR spectrum of the ligand  $L^1$ .





**Figure S10.** <sup>13</sup>C NMR spectrum of the ligand  $L^1$ .





**Figure S11.** <sup>1</sup>H NMR spectrum of the ligand  $L^2$ .





**Figure S12.** <sup>13</sup>C NMR spectrum of the ligand  $L^2$ .



**Figure S13.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of the compound 6a.

**Figure S14.** <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of the compound 6a.



## References

- <sup>1</sup> T. J. Swift, R. E. Connick, J. Chem. Phys., 1962, **37**, 307.
   <sup>2</sup> J. R. Zimmermann, W. E. Brittin, J. Phys. Chem., 1957, **61**, 1328.
   <sup>3</sup> Z. Luz, S. Meiboom, J. Chem. Phys., 1964, **40**, 2686.
   <sup>4</sup> J. H. Freed, J. Chem. Phys., 1978, **68**, 4034.
   <sup>5</sup> S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc., 1991, **22**, 487.