
SI Appendix

Here we derive the results for the models discussed in the main text. Let the random variable N(t)
represent the number of transcripts of p16 present at time t. The average rates at which
transcripts are produced and degraded are u0 + u N(t) and w0 + w N(t), respectively, while the
average rate at which an individual is removed from the population is d0 + d N(t). We assume
that the initial transcript level N(0)=n0 is also a random number with a mean µ0 and variance σ0

2.
Finally, let pn(t) = Prob[N(t) = n]. That is, pn(t) is the probability that at time t an individual has n
transcripts.

MODEL I

A simple model that includes only forward, 0uukuk += , and backward, 0wwkwk += , transition
rates can produce expression levels that initial grow exponentially, but eventually saturate. To
capture this behavior, uk has to be larger than wk for small k and smaller than wk for large k.

These conditions are satisfied if 00 wu >  and wu < . The mean steady-state value 
uw
wuns −

−
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corresponds to the state in which the rates balance 
ss nn wu = .

The equations for the probabilities pk(t) are:
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the above expressions we find that:
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with the initial conditions ( ) 00 nq =  and ( ) 2
00 nr = . Solving Eq. (2) we obtain:
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Averaging the above expressions over all possible n0, produces the following expressions for
mean and variance of the expression level:
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As expected, for large t, the mean approaches ( ) sntN ≈ , while for small t we find that

( ) ( )( )00 μμ −−+≈ snuwttN .

Limiting case for t >> 1/(w - u)
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coefficient of variation (standard deviation/mean) is given by 
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consider two cases:

l) Suppose uw >> , then if 1>>sn , as measure for p16 levels, we have 00 wu >> . In this case, for

large t we find that ( )
w
utN 0≈  and 11
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wcv . Therefore, in this limit the model is

unable to account for the measured variability in p16 expression levels.

2) In the opposite limit when uw ~ , we find that the coefficient of variation is not necessarily

small 
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limit, on the time scales that correspond to the p16 measurements (<80 years) the dependence is
approximately linear.



MODEL II

In this section we derive the results for  the model in which saturation of p16 levels occur due to
the removal of individuals from the sample population at an average rate of d0(t) + d N(t). This
model also produces expression levels that initially grow exponentially then eventually saturate.
In this case pn(t) satisfies the following equation:
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Initially, we assume that at t = 0, the transcript level is given by a fixed value n0. That is,
0
(0) 1np = . Below we relax this assumption and allow the initial transcript level to be a random

variable. Because in this model we do not consider events that decrease the expression level,
( ) 0np t ≡  for n < n0. We simplify Eq. (6) using the following transformation
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We look for solutions of Eq. (8) of the form
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where H is an arbitrary non-zero constant. Solving Eq. (11) recursively, we find
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while the solution of Eq. (12) is
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We first compute the mean expression level ( )tN  for fixed n0:

( ) ( )
( )

( ) ( )
( )

( )
( ) ( ) ( )00 0 0

0 0

0 0

1
1 1

k n sk s

k n sk s

kp t n s f t ag t uN t n n g t
g t g t up t f t

∞ ∞

+= =
∞ ∞

+= =

+ ⎡ ⎤= = = + = +⎢ ⎥− − ⎣ ⎦
∑ ∑
∑ ∑

     (16)

Similarly,
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Given n0 has a mean value of μ0 and variance of σ0
2, averaging with respect to n0  produces the

following expressions for the mean, variance and coefficient of variation of N(t):
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Results for the limit t >> 1/(u + d)
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1) For the case of a constant growth rate uk = u0 (i.e. u = 0), in the long time limit, we have
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with the variability observed in the measurements of p16 expression. This is the limit for which
the best fits to the data have been obtained.

GENERALIZATIONS OF MODEL I

Previously we obtained exact formulas for the first two moments of the down-regulation model with
production and degradation rates, ku  and kw , that depend linearly on the p16 level. This analysis showed
that such a model fails to capture both the mean and variability of the experimental data. To prove that
this failure is not a result of the linear forms of ku  and kw , we define a more general class of models and
show that within this class, the larger the coefficient of variation (std/mean) the longer it takes to reach
saturation. This property makes this class of models inadequate to explain the data.

Steady-state probability distribution and coefficient of variation

Let us assume that ku  and kw  are two arbitrary functions of k , such that kk wu >  for snk < , kk wu <

for snk > , and 
ss nn wu = . This definition ensures that with time the system saturates near the value sn .

Some examples of the functional forms of this class of models are shown in Fig. S2.

First, we find the exact expression for the steady-state distribution:

( )tpP ktk ∞→
= lim , where 0=kP  for 0<k .

From the Master equation
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we have
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Solving this equation recursively, we find

1

00

0

00
0

1

00
1 w

Pw
w

wuP
w

wuP ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

+
= ,

2

00

10

101010
0

2

0
1

2

11
2 w

Pw
ww

uuuwwwP
w
uP

w
wuP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++
=−

+
= ,

0 1 2 0 1 2 0 1 2 0 1 2 0 02 2 1
3 2 1

3 3 0 1 2 3

⎛ ⎞+ + ++
= − = ⎜ ⎟

⎝ ⎠

w w w w w u w u u u u u w Pu w uP P P
w w w w w w

Therefore, for ,2,1=k , we can write

∏
∑ ∏

−

=

−

= =
+

= 1

0

1

0 0
00

1
k

i iik

k

m

m

i ii
k

uww

uw
PwP  .  (22)

Using the normalization condition: 1=∑
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Formally, Eq. (22) can be used to compute values for any steady-state moment mk , from which the

standard deviation is computed as
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It is useful to derive an approximate but simple and explicit expression for the standard deviation. To
achieve this goal, we expand ku  and kw  in the vicinity of sn  as
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In the limit ss n<<σ (i.e., the limit of small fluctuations), we can use the linear approximations given by
Eqs. (24) and (25) and Eq. (5) to find that
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Therefore, steady state coefficient of variation can be approximated as
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This expression is exact when ku  and kw  are linear functions of k , and remains accurate as long as u′
and w′  are not too close to each other (see examples below).

Time to reach steady state (saturation)

We need to quantify the time it takes to approach steady state. Using Eq.(21) we find that for arbitrary ku
and kw the time-dependent mean q(t) satisfies the equation
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For cases in which the probabilities ( )tpk  are sharply peaked around the mean value ( )tq , Eq.(27) can
be approximated as
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As before, this estimation is exact if ku  and kw  are linear functions of k and is valid as long as the
coefficient of variation is relatively small.

Examples:

The following examples demonstrate quantitatively that to obtain a wide distribution ( 1~s
vc ) at steady-

state, ku  and kw  must be close to each other for a range of k’s, but in this case because of the slow drift

( )−k ku w , the time to reach saturation is large. Therefore, this class of models fails to satisfy

simultaneously the following two properties of the data: 1~s
vc  and 80)( <→ snNt years old.

For each model, we determine parameters that can be tuned to achieve large values of the coefficient of
variation and vary them to explore the model’s behavior. In particular, we plot three representative values
of the following quantities:

A. The forward drift, kk wu − .

B. The time to reach a mean value N  as a function of snN  according to Eq. (28).

C. The steady-state coefficient of variation, ss
s
v nc σ= , as a function of an appropriate parameter, both

according to the exact formulas (Eqs. 22 and 23) and the approximate expression given by Eq. (26).
D. The steady-state distributions.

Because the expression level of p16 must not be negative, for all models we assume that 00 =w . We also

make sure that ku  and kw  are written in a form consistent with the condition 
ss nn wu = .
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In this case, the steady-state coefficient of variation is a function of the ratio, wu . Therefore, The
steady-state distribution is broad, when this ratio is close to unity.
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In this case, the steady-state coefficient of variation depends on both the Hill coefficient, h , and the ratio,
wu0 . The steady-state distribution is wide, when the Hill coefficient approaches the value, wu042 − .

For a fixed h , s
vc  is maximal when 00 =u .

Model-Ib:
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Here the steady-state coefficient of variation only depends on the Hill coefficient, h , so that the steady-
state distribution becomes wider, as the Hill coefficient approaches 2ln2 .

Model-Ic:
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In this case, the steady-state coefficient of variation depends on the ratio, wu , and the difference
between the Hill coefficients, 1h  and 2h . The steady-state distribution is wide, when 21 hh  is close to

wu . For fixed Hill functions, say 21 hh = , s
vc  grows as wu  approaches to the unity.

Model-Id:
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For this type of model 0>′w  while 0<′u , and hence, s
vc  is bounded from above. Here, for the Hill

functions with 1>h , 0.06732 ≈< s
s
v nc . Therefore, this model Id, as well as its variations Ie and If,

are even less plausible than the ones considered previously.

SKEWNESS OF THE DISTRIBUTION

In this section we explore the skewness of the p16 distributions as a function of age for both the
experimental data and Model II. The skewness is defined as
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Unfortunately, the number of data points is too small to draw any conclusions based on a standard
binning of the data. For bins of length 4 years we have on average roughly 10 data points per bin.
Although 10 points is a reasonable number to estimate the mean and variance of the data, it is not
sufficient to accurately estimate the overall distribution. In Fig. S8 we show 2D histograms (age × p16) of
the data for both linear and log2 scales with bins of size 4×20 and 4×0.5, respectively. Binned in this way
the data have skewness values that range from –1 to +2.5 on the linear scale and from –1 to +1 on the log
scale.

To better estimate the distribution and its skewness we used a moving bin method analogous to the
procedure used to estimate the mean values. In particular, we count data points falling within a box of
large size, 20×100, and move the box in small steps, 4 and 20, along the ‘age’ and ‘p16’ axes. As a result
the number of data points collected for each increment significantly increased and the 2D distribution
appears much smoother.

Figs. S9 and S10 that show that:

A. On a linear scale the data have high positive skewness varying between 1.0 and 2.5 with the
distribution maximum less than the statistical mean.

B. On a log2 scale the data are more symmetric with the skewness ranging from 0.0 to 0.7.

Fig. S11 shows contour plots of the 2D distribution for Model II. To qualitatively compare with the
distribution estimated from the data, we also plot the distributions at fixed ages of 20, 40 and 60 years.



Because the distribution for the log of a random variable is not equal to the log of the distribution, we
used the model distribution to generate a large number (~107) of ‘theoretical’ data points, and then plotted
the distributions of log of these numbers. The skewness of the theoretical distribution at various time
points for both linear and log2 scales are shown in Fig. S12.

Taking into account the limited amount of data for p16 levels, the predicted distributions from Model II
are in good agreement with the data.


