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A Reduction of Equation [5] to Equation [6]

For an upper convected Maxwell fluid, the stress-strain relationship is given by Equation [5],

λ

(

Dτ

Dt
− (∇ · v)τ − τ(∇ · v)T

)

+ τ = η(∇v + ∇v
T ),

where η is the shear viscosity, G is the shear modulus and λ = η
G

is the relaxation time of the Maxwell element.
For collagen I, η = 1.1× 108 dyn · s/cm2, G = 1.5× 104 dyn/cm2 (1,2), therefore λ ∼ 7.3× 103 sec ∼ 2h. We
assume that λ∇·v and λDτ

Dt
are small and can be neglected, so that the stress-strain relationship [5] simplifies

to Equation [6]
τ = η(∇v + ∇v

T ).

To justify the simplification, we nondimensionalize Equation [5] with the characteristic space and time scales
in wound healing, L0 = 1 cm, T0 = 5 day. The nondimensionalized variables are

x′ =
x

L
, t′ =

t

T
, λ′ =

λ

T
, v

′ =
v

L/T
∼ O(1), τ ′ =

τ

η/T
,

in these variables the stress-strain relationship becomes

λ′

(

Dτ ′

Dt′
− (∇′ · v′)τ ′ − τ ′(∇′ · v′)T

)

+ τ ′ = (∇′
v
′ + ∇′

v
′T ), (A.1)

During wound healing ∇′ · v′ ∼ O(1) and ∇′v′ ∼ O(1). Since λ′ ≈ 1

60
≪ 1, the terms λ′(∇′ · v′)τ ′ and

λ′τ ′(∇′ · v′)T are negligible, and from λ′ Dτ ′

Dt′
+ τ ′ = O(1) we see that the term λ′ Dτ ′

Dt′
may also be neglected,

which leads to Equation [6].
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B Derivation of Equations [7] – [10] and [12] under radially sym-

metry

The equations for the ECM are [1], [3] together with the relations [2], [4], [6]. In this section we derive these
equations in polar coordinates (r, θ) under the assumption of radial symmetry.

Set
ρ = ρ(r), v = ver, P = P (ρ(r)),

then

∇v =





∂v

∂r
0

0
v

r



 .

Writing the stress tensor τ in polar coordinates

τ =

(

τrr τrθ

τθr τθθ

)

,

Equation [6] becomes
(

τrr τrθ

τθr τθθ

)

= 2η





∂v

∂r
0

0
v

r



 ,

so that
τrθ = τθr = 0,

which means that there is no shear stress between neighboring radial sections and annulus. Setting τ1 = τrr

and τ2 = τθθ, we obtain

τ1 = 2η
∂v

∂r
, τ2 = 2η

v

r
.

By substituting this into the equation σ ≡ −PI + τ , we obtain

σ =

(

σ1 0
0 σ2

)

, where σ1 = −P + τ1, σ2 = −P + τ2.

Equation [3] in polar coordinates reduces to (see, for instance, the appendix of (3))

−
∂P

∂r
+

1

r

∂

∂r
(rτ1) −

τ2

r
= 0.

Substituting the forms of τi into the last equation, we obtain

−
∂P

∂r
+ 2η

1

r

∂

∂r
(r

∂v

∂r
) − 2η

v

r2
= 0,

or
1

r

∂

∂r
(r

∂v

∂r
) −

v

r2
=

1

2η

∂P

∂r
.

At the fixed boundary the tissue velocity is assumed to be zero, i.e., v = 0 at r = L. Therefore the equation
for ρ becomes an ODE and no boundary condition is needed. We assume that there is no external force at
the free boundary, that is, σ · ν = 0, where ν is the outward normal vector to the free boundary. Under the
assumption of radial symmetry, ν = −er, and σ · ν = −σ · er = −σ1, so that −P + τ1 = σ1 = 0. Since

τ1 = 2η
∂v

∂r
, we obtain the boundary condition

∂v

∂r
=

P

2η
at r = R(t). This way we derived the equations

∂ρ

∂t
+

1

r

∂

∂r

(

rρv
)

=
kρw

w + Kwρ

f(1 −
ρ

ρm

) − λρρ for R(t) ≤ r ≤ L (B.1)

1

r

∂

∂r

(

r
∂v

∂r

)

−
v

r2
=

1

2η

∂P

∂r
for R(t) ≤ r ≤ L (B.2)

v = 0 at r = L, (B.3)

∂v

∂r
=

P

2η
at r = R(t). (B.4)
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The constitutive equations for the cells and chemicals are given by

∂ u

∂t
= −∇ · (Ju) + Gu,

with
Ju = J

c
u + J

a
u, J

c
u = vu,

From the radial symmetry assumption, we have Ju ·eθ = J
c
u ·eθ = J

a
u ·eθ = 0, so that Ju = Juer = Jc

uer +Ja
uer

with Jc
u = vu. Therefore the constitutive equation becomes

∂ u

∂t
+

1

r

∂

∂r
(ruv) = −

1

r

∂

∂r
Ja

u + Gu.

At the free boundary, r = R(t), there is no lost or gain of cells or chemicals, so no-flux (or Neumann)
boundary conditions are imposed. With a moving boundary, the Neumann boundary condition becomes

Ju · er − Ṙ(t)u = 0.

Since J
c
u · er = (v · er)u = vu = Ṙ(t)u at the free boundary, this condition simplifies to

Ja
u = 0. (B.5)

3



C Nondimensionalization and front-fixing transformation

We nondimensionalize the model equations by taking

r′ =
r

L0

, t′ =
t

T0

, ρ′ =
ρ

ρ0

, v
′ =

v

L0/T0

, P ′ =
P

η/T0

, R′ =
R

L0

,

w′ =
w

w0

, e′ =
e

Ke

, p′ =
p

Kp

, m′ =
m

m0

, f ′ =
f

f0

, n′ =
n

b0

, b′ =
b

b0

,

where L0 = 0.15 cm, T0 = 6.25 h, and ρ0, w0, f0, b0 are the healthy tissue steady state values and m0 is
the inactivated macrophage density. Note that the L0 and T0 chosen here are different from the characteristic
values used in Equation A.1. The reason for introducing the present scales is so that we can immediately use
some of the non-dimensionalized parameters from (4). In particular, D′

e (which we take to be the same as D′

p)

is equal to 1. Note also that kmb0
2λm

represents the balanced amount of macrophage when p = Kp.
We nondimensionalize the parameters using the above scaling,

{L′, R′

0, K
′

R} =
1

L0

{L, R0, KR}, {K ′

wρ, K
′

wf , w′

b} =
1

w0

{Kwρ, Kwf , wb}

ρ′m =
ρm

ρ0

, β′ =
β

η/T0

, k′

ρ =
kρf0T0

ρ0

, λ′

ρ = λρT0,

{D′

w, D′

e, D
′

p, D
′

m, D′

f , D′

n, D′

b} =
T0

L2
0

{Dw, De, Dp, Dm, Df , Dn, Db},

{χ′

m, χ′

f , χ′

n} =
T0

L2
0

{χmKp, χfKp, χnKe},

{k′

w, λ′

wf , λ′

wm} = T0{kwb0, λwff0, λwmm0},

{k′

p, λ
′

p, k
′

pb, k
′

e, λ
′

en, λ′

eb, λ
′

e} = T0{kp

m0

Kp

, λp, kpb

1

L0Kp

, ke

m0

Ke

, λenb0, λebb0, λe},

{λ′

m, k′

f , λ′

f , k′

nb, k
′

n, λ′

nb, λ
′

nn} = T0{λm, kf , λf , knb, kn, λnbb0, λnnb0},

m′

m =
mm

m0

, f ′

m =
fm

f0

, n′

m =
nm

b0

.

We drop the primes for simplicity of notation and further introduce the transformation

ξ =
r − R(t)

L − R(t)

(

r = (1 − ξ)R(t) + ξL
)

, (C.1)

which transforms the free boundary to ξ = 0 and the fixed boundary to ξ = 1. With this transformation each
function u(r, t) becomes u′(ξ, t), but for simplicity we shall drop the primes. From [C.1] one can verify by
directed computation that

∂u

∂r
=

1

L − R(t)

∂u

∂ξ
, (C.2)

∂

∂r

(

r
∂u

∂r

)

=
1

(L − R(t))2
∂

∂ξ

(

r(ξ)
∂u

∂ξ

)

, (C.3)

∂u

∂t

∣

∣

∣

∣

x

=
∂u

∂t

∣

∣

∣

∣

ξ

+
∂u

∂ξ

∣

∣

∣

∣

t

∂ξ

∂t

∣

∣

∣

∣

x

=
∂u

∂t

∣

∣

∣

∣

ξ

+
R′(t)

L − R(t)

(

ξ − 1
)∂u

∂ξ
, (C.4)

(

ξ − 1
)∂u

∂ξ
=

1

r

∂

∂ξ

(

r
(

ξ − 1
)

u

)

+

(

(1 − ξ)(L − R(t))

r
− 1

)

u. (C.5)

Using these equations and setting

K = K(ξ) =
R′(t)

L − R(t)

(

(1 − ξ)(L − R(t))

r
− 1

)

, (C.6)

we obtain
∂u

∂t

∣

∣

∣

∣

x

+
1

r

∂

∂r

(

ruv
)

=
∂u

∂t

∣

∣

∣

∣

ξ

+ B,
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where, by [C.2] and [C.4] ,

B =
R′(t)

L − R(t)

(

ξ − 1
)∂u

∂ξ
+

1

(L − R(t))r

∂

∂ξ

(

ruv
)

.

Then by [C.5] and [C.6] ,

B =
R′(t)

L − R(t)

1

r

∂

∂ξ

(

r
(

ξ − 1
)

u

)

+
1

(L − R(t))r

∂

∂ξ

(

ruv
)

+ Ku

=
1

L − R(t)

[

1

r

∂

∂ξ

(

ru
(

R′(t)(ξ − 1) + v
)

)

]

+ Ku.

Hence
∂u

∂t

∣

∣

∣

∣

x

+
1

r

∂

∂r

(

ruv
)

=
1

L − R(t)

[

1

r

∂

∂ξ

(

ru
(

R′(t)(ξ − 1) + v
)

)

]

+ Ku. (C.7)

Using [C.7] and [C.3] we obtain the following system with the new variable ξ,

∂ρ

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rρ
(

R′(t)(ξ − 1) + v
)

)

]

=
kρw

w + Kwρ

f(1 −
ρ

ρm

) − λρρ − Kρ, (C.8)

1

(L − R(t))2
1

r

∂

∂ξ

(

r
∂v

∂ξ

)

−
v

r2
=

1

L − R(t)

∂P

∂ξ
, (C.9)

∂w

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rw
(

R′(t)(ξ − 1) + v
)

)

]

=
Dw

(L − R(t))2

[

1

r

∂

∂ξ

(

r
∂w

∂ξ

)]

+ kwb
(

(1 − α)wb − w
)

−

[

(

λwff + λwmm
)

(

1 +
λwwp

1 + p

)

+ λwm

]

w − Kw, (C.10)

∂p

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rp
(

R′(t)(ξ − 1) + v
)

)

]

=
Dp

(L − R(t))2

[

1

r

∂

∂ξ

(

r
∂p

∂ξ

)]

+ kpmGp(w) −
λpffp

1 + p
− λpp − Kp, (C.11)

∂e

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

re
(

R′(t)(ξ − 1) + v
)

)

]

=
De

(L − R(t))2

[

1

r

∂

∂ξ

(

r
∂e

∂ξ

)]

+ kemGe(w) − (λenn + λebb + λe)e − Ke, (C.12)

∂m

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rm
(

R′(t)(ξ − 1) + v
)

)

]

=
1

(L − R(t))2

[

1

r

∂

∂ξ

(

r
(

Dm

∂m

∂ξ
− χmρmH(mm − m)

∂p

∂ξ

)

)]

+
kmbp

1 + p
− λmm (1 + λdD(w)) − Km, (C.13)

∂f

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rf
(

R′(t)(ξ − 1) + v
)

)

]

=
1

(L − R(t))2

[

1

r

∂

∂ξ

(

r
(

Df

∂f

∂ξ
− χfρfH(fm − f)

∂p

∂ξ

)

)]

+ kfGf (w)f

(

1 −
f

fm

)

− λff(1 + λdD(w)) − Kf, (C.14)
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∂n

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rn
(

R′(t)(ξ − 1) + v
)

)

]

=
1

(L − R(t))2

[

1

r

∂

∂ξ

(

r
(

Dn

∂n

∂ξ
− χfρnH(nm − n)

∂e

∂ξ

)

)]

+ (knbb + knn)
e

1 + e
− (λnbb + λnnn)n − Kn, (C.15)

∂b

∂t
+

1

L − R(t)

[

1

r

∂

∂ξ

(

rb
(

R′(t)(ξ − 1) + v
)

)

]

=
1

(L − R(t))2

[

1

r

∂

∂ξ

(

r
(

Db

∂b

∂ξ
+ ADnb

∂n

∂ξ
− AχnbρnH(nm − n)

∂e

∂ξ

)

)]

+ kbGb(w)b(1 − b) + (λnbb + λnnn)n − Kb, (C.16)

Ṙ(t) = v(R(t), t). (C.17)

where

K = K(ξ) =
R′(t)

L − R(t)

(

(1 − ξ)(L − R(t))

r
− 1

)

,

Gp(w) =



























3w, 0 ≤ w < 0.5

2 − w, 0.5 ≤ w < 1

1

3
w +

2

3
, 1 ≤ w < 4

2, w ≥ 4

, Ge(w) =



























2w, 0 ≤ w < 0.5,

2 − 2w, 0.5 ≤ w < 1,

1

3
w −

1

3
, 1 ≤ w < 4,

1, w ≥ 4

,

Gf (w) =
2w

w + Kwf

, Gb =
2w

w + Kwρ

, D(w) = 1 − H(w − 0.2)H(3 − w).

The boundary conditions at the fixed boundary ξ = 1 become

v = 0, (C.18)

(1 − α)(w − 1) +
αL

L − R(t)

∂w

∂ξ
= 0, (C.19)

(1 − α)p +
αL

L − R(t)

∂p

∂ξ
= 0, (C.20)

(1 − α)e +
αL

L − R(t)

∂e

∂ξ
= 0, (C.21)

(1 − α)m +
αL

L − R(t)

(

∂m

∂ξ
−

χm

Dm

ρmH(mm − m)
∂p

∂ξ

)

= 0, (C.22)

(1 − α)(f − 1) +
αL

L − R(t)

(

∂f

∂ξ
−

χf

Df

ρfH(fm − f)
∂f

∂ξ

)

= 0, (C.23)

(1 − α)n +
αL

L − R(t)

(

∂n

∂ξ
−

χn

Dn

ρnH(nm − n)
∂n

∂ξ

)

= 0, (C.24)

(1 − α)(b − 1) +
αL

L − R(t)

∂b

∂ξ
− (1 − α)

ADn

Db

bn = 0, (C.25)

and at the free boundary ξ = 0 are

∂v

∂ξ
=

(

L − R(t)
)

P, (C.26)

∂w

∂ξ
=

∂e

∂ξ
=

∂n

∂ξ
=

∂b

∂ξ
= 0, (C.27)

∂p

∂ξ
= −

kpbR

DpR0

(

L − R(t)
)

, (C.28)

− Dm

∂m

∂ξ
+ χmρmH(mm − m)

∂p

∂ξ
= 0, (C.29)

− Df

∂f

∂ξ
+ χfρfH(fm − f)

∂p

∂ξ
= 0. (C.30)
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The initial conditions take the form

R(0) = 0, v = 0, ρ = f = 1, w = 1 − α, b = g

(

ξ(L − R0)

ǫ

)

,

e = m = n = 0, p = max

{

0,
kpb

Dp

(

ǫ − ξ(L − R0)

)}

.

(C.31)

7



D Parameters of the model

Most of the parameters in Table S1 are obtained from the literature cited; the remaining parameters are
estimated as described below. Proteins make up about a quarter of body volume, and the dermal tissue
protein is mainly ECM protein (5), therefore ρ0 is approximately 0.25. We assume that the maximally allowed
ECM volume fraction is 2ρ0, therefore ρm is estimated as 0.5. We assume that when ρ > ρ0, the ECM pressure
depends on its density linearly with rate β = 10, which means that if ECM is compressed to twice its normal
density ρ0 and released immediately afterwards, it will relax to ρ0 in about two hours. This is estimated from
the one dimensional ECM equation with no growth term and surface force

∂ρ

∂t
+

∂(ρv)

∂x
= 0, ρ(0) = 2,

∂v

∂x
= β(ρ − 1)+ v(0, t) = 0.

whose solution satisfies v(x, t) = βx(ρ−1)+ and ρ = ρ(t) = 1/(1−0.5e−βt), with ρ(0) = 2 and ρ(2 hours) ≈ 1.02.
In healthy tissue, there is no net growth of ECM, i.e., Gρ(f0, w0, ρ0) = 0, therefore we can solve for λρ and

obtain

λρ =
kρw0f0

w0 + Kwρ

(

1

ρ0

−
1

ρm

)

. (D.1)

Similarly, the transfer rate of oxygen from blood to tissue, kw, is taken such that, at homeostasis, tissue oxygen
net growth is zero, therefore we can solve, from the equation for w,

kw =
(λwff0 + λwm)m0w0

b0(wb − w0)
. (D.2)

Also, the maximum growth rate of fibroblast kf is taken so that in normal healthy tissue fibroblasts is at steady
state f0, so that, using the equation for f ,

kf =
λf

1 − f0/fm

. (D.3)

Note that the process p → m → p is autocatalytic. In homeostasis this process should be such that the
density of the activated macrophages is m = 0 and therefore also p = 0. A steady state of (p, m) is the

intersection of the two nullclines of the equations for p and m, namely, kpm =
λpf p

Kp+p
+ λpp and kmp

Kp+p
= λmm.

For simplicity, we assume homeostasis is the only steady state, i.e., the only intersection of the two nullclines.
This is satisfied if and only if

kmkp

λm
< λp + λpf , and the parameter kp is chosen to abide by this inequality.

We assume that the random motility of fibroblasts in the wound healing environment is the same as that
of macrophages, i.e., Df = Dm, which is much smaller than that of soluble chemicals but a little larger than
that of blood vessels. As in (4), we estimate the maximum volume fraction of macrophages, fibroblasts and
capillary tips in the wound to be 1%, so that we can take mm = fm = nm = 10−2 g·cm−3. As in (4), we assume
that the oxygen consumption rate by fibroblasts is smaller than that by macrophages, and λwf = λwm/15.
We also assume that the extra oxygen consumption rate by the skin tissue due to the wound, λww (which is a
nondimensional parameter), is equal to 2, i.e., when normalized p is equal to 1, the effect of p is to double the
intake of oxygen by fibroblasts and by activated macrophages. We assume that the growth rate of fibroblast
has the same dependence on oxygen as the synthesis of ECM, i.e., Kwρ = Kwf . The boundary flux parameter
kpb is chosen so that the normal wound heals in 10 – 15 days post wounding as observed experimentally (11).
We choose the differentiation rate of monocytes to macrophages, km, such that the maximum macrophage in
the wound is 6 times that of the healthy tissue, i.e., km = 6λmm0

b0
. We assume that under extreme hypoxia or

hyperoxia, the death rates of cells are three times that under normoxia, i.e., λd = 2. If we increase L to 2L,
simulation results do not change appreciably.
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Table S1: Table of dimensional and nondimensionalized parameters.
Notation Dimensional Nondim Source

L0 0.15 cm 1 (4)
T0 6.25 h 1 (4)
ρ0 0.25 1 (5)
w0 100 mmHg 1 (6)
Kp 10−8 g·cm−3 1 (4, 7)
Ke 10−8 g·cm−3 1 (4, 7)
m0 10−3 g·cm−3 1 (4, 7)
f0 10−3 g·cm−3 1 (4, 8)
b0 10−3 g·cm−3 1 (4, 9, 10)
L∗ 0.75 cm 5 (11)
R0 0.4 cm 8/3 (11)
ρm 0.5 2 Estimated
Kwρ 25 mmHg 0.25 (6, 12–14)
Kwf 0.25 Estimated
kρ 5/16 (4)
λρ 0.1 Eqn [D.1]
β 10 Estimated

Dw 5 × 10−7 cm2/s 0.5 (15)
Dp 10−6 cm2/s 1 (16,17)
De 10−6 cm2/s 1 (16,17)
Dm 5 × 10−2 (4)
Df 5 × 10−2 Estimated
Dn 10−9 cm2/s 10−3 (16, 18)
Db 7 × 10−10 cm2/s 7 × 10−4 (17, 19)
χm 0.1 (4)
χf 10-500 cm5 g−1s−1 0.1 (8)
χn 1-100 cm5 g−1s−1 1 (16,20)
mm 10−2 g·cm−3 10 (4)
fm 10−2 g·cm−3 10 (4)
nm 10−2 g·cm−3 10 (4)
A 0.1 (4)
wb 200 mmHg 2 (6)
kw 4.39 Eqn [D.2]
λwf 0.227 (4, 21)
λwm 0.185 cm3g−1s−1 4.16 (4, 21)
λww 2 Estimated
kp 1.5 Estimated
λpf 9 Estimated
λp 4 ×10−5 s−1 0.9 (4)
kpb 4 Estimated
ke 50 (4)
λen 90 (4)
λeb 4 cm3g−1s−1 90 (22,23)
λe 4 ×10−5 s−1 0.9 (24,25)
km 2.7 ×10−1 Estimated
λm 2 ×10−6 s−1 4.5 ×10−2 (4, 26)
λd 2 Estimated
kf 5.78 ×10−3 Eqn [D.3]
λf 2.31 ×10−7 s−1 5.2 ×10−3 (27)
knb 2.16 ×10−2 (4)
kn 2.16 ×10−2 (4, 21)
kb 5.56 ×10−6 - 1.56

×10−5 s−1

2.25 ×10−1 (19, 20, 28)

λnn 10−1 cm3g−1s−1 2.25 (18)
λnb 10−3 cm3g−1s−1 2.25 ×10−2 (18)

∗ By increasing L the results don not change appreciably.
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E Time evolution figures
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Figure S1: Normal wound healing (α = 0): spatial distribution of cells and chemokines at different times. Blue:
t = 0; green: t = 5; red: t = 10; cyan: t = 12.5.
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Figure S2: Ischemic wound healing (α = 0.88): spatial distribution of cells and chemokines at different times.
Blue: t = 0; green: t = 5; red: t = 10; cyan: t = 15; yellow: t = 20.
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