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A Reduction of Equation [5] to Equation [6]

For an upper convected Maxwell fluid, the stress-strain relationship is given by Equation [5],

A <% - (V.V)T—T(V-V)T> +7=n(Vv+VvT),

where 7 is the shear viscosity, G is the shear modulus and A = % is the relaxation time of the Maxwell element.
For collagen I, = 1.1 x 108 dyn - s/ecm?, G = 1.5 x 10* dyn/cm? (1,2), therefore A ~ 7.3 x 103 sec ~ 2h. We
assume that \V - v and /\% are small and can be neglected, so that the stress-strain relationship [5] simplifies
to Equation [6]

7 =n(Vv 4+ Vvh).

To justify the simplification, we nondimensionalize Equation [5] with the characteristic space and time scales
in wound healing, Ly = 1 cm, Ty = 5 day. The nondimensionalized variables are

, T, t ., A, v , T
— Ll = N=2 v =001, =
. L’ T’ T’ v L/T (1), 7 n/T’

in these variables the stress-strain relationship becomes

D /
N <D;/ _ (v/ . V/)T/ _ T/(v/ . V/)T) T 7= (vlv/ 4 V/VIT)7 (Al)
During wound healing V' - v/ ~ O(1) and V'v/ ~ O(1). Since N ~ 45 < 1, the terms X (V' - v/)7’ and
N7 (V' -v")T are negligible, and from \’ DD;,/ + 7 = O(1) we see that the term X\ g;,/ may also be neglected,
which leads to Equation [6].




B Derivation of Equations [7] — [10] and [12] under radially sym-

metry

The equations for the ECM are [1], [3] together with the relations [2], [4], [6]. In this section we derive these

equations in polar coordinates (r,6) under the assumption of radial symmetry.
Set

p=p(r), v=ve., P=P(pr)),
then 5
)
V’U = aT v
O _
r

Writing the stress tensor 7 in polar coordinates
[ Trr Tre
T = )
Tor To6
v

0

Too

Equation [6] becomes

Trr
Tor

Sl O

so that
Tro = Tor = 07

which means that there is no shear stress between neighboring radial sections and annulus. Setting 71 = 7.,

and 7o = Tyg, we obtain
ov v
T = 277 ) T2 = 277_
or r

By substituting this into the equation ¢ = —PI + 7, we obtain

0:(01 0), where o1 =—-P+71, o09=—-—P+n.
0 g9

Equation [3] in polar coordinates reduces to (see, for instance, the appendix of (3))

o 10

- - —==0.
or  ror (rm) r
Substituting the forms of 7; into the last equation, we obtain
OP 10, ov v
- ——(r=—)-2n—==0
or r or (r 8r) O ’
or
lﬁ(r@) _v_10P
ror> or’ 2 2nor’

At the fixed boundary the tissue velocity is assumed to be zero, i.e., v = 0 at r = L. Therefore the equation
for p becomes an ODE and no boundary condition is needed. We assume that there is no external force at
the free boundary, that is, o - v = 0, where v is the outward normal vector to the free boundary. Under the

assumption of radial symmetry, v = —e,, and 0 - v = —0 - e, = —o01, so that —P + 71 = 01 = 0. Since
T = 277%, we obtain the boundary condition a_v =3, at r = R(t). This way we derived the equations
r r n
op 10 k,w p
— 4+ —— =—Frf(1——)— X for R(t) <r <L B.1
8t * T 87” (rpv) w + Kw/)f( p'm) pp o ( ) == ( )
10 v v 1 0P
—r=—=]|—-—===—— forRt)<r<L B.2

r Or (rar) r2  2n Or or R(t) <7 < (B2)
v=0 atr=1L, (B.3)
ov P
- = B.4
5~ 3 at r = R(t) (B.4)



The constitutive equations for the cells and chemicals are given by

du
— = -V -(J,) + Gy,
5 (Ju) +
with

Jo,=J, +J2, I =vu,

u

From the radial symmetry assumption, we have J,,-eg = J -eg = J%-eg = 0, so that J,, = Jy,e, = JSe, + Jley
with J¢ = vu. Therefore the constitutive equation becomes
ou 190 10

At the free boundary, » = R(t), there is no lost or gain of cells or chemicals, so no-flux (or Neumann)
boundary conditions are imposed. With a moving boundary, the Neumann boundary condition becomes

J.-er— R(t)u =0.

Since J¢ - ey = (v - ex)u = vu = R(t)u at the free boundary, this condition simplifies to

Jo = 0. (B.5)



C Nondimensionalization and front-fixing transformation

We nondimensionalize the model equations by taking

r t p v P R
Tl:_a t/:_7 /:_a VI: ) P/: B} RI:_a
Lo To P Po Lo /Ty n/To Lo
w e P m f n b
w/:_7 e/:_a p/:_7 mI:_7 l:_7 nl:_7 bl:_a
wWo K. K, mo fo bo bo

where Lo = 0.15 cm, Ty = 6.25 h, and pg, wo, fo, by are the healthy tissue steady state values and myg is
the inactivated macrophage density. Note that the Ly and Ty chosen here are different from the characteristic
values used in Equation A.1. The reason for introducing the present scales is so that we can immediately use
some of the non-dimensionalized parameters from (4). In particular, D, (which we take to be the same as D))

is equal to 1. Note also that kz’;\—f:‘ represents the balanced amount of macrophage when p = Kj,.
We nondimensionalize the parameters using the above scaling,

wp?

p/ :P_m r_ B k/:kaOTO
™ po’ n/Ty’ 7 po

T
{Dw, D¢, Dy, Dy, DY, Dy, Dy} = L—Z{Dw,De,Dpme,Df,Dme},
0

1 1
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We drop the primes for simplicity of notation and further introduce the transformation

r— R(t)

- I he (r:(1—@R@y+aJ, (C.1)

§

which transforms the free boundary to £ = 0 and the fixed boundary to £ = 1. With this transformation each
function wu(r,t) becomes u'(&,t), but for simplicity we shall drop the primes. From [C.1] one can verify by
directed computation that

ou 1 ou

or  L—R(t) 0¢ (C.2)
0] ou 1 B ou

ﬁcﬁﬁzﬁiﬁﬁﬁioﬁﬁﬁ’ (C3)
Qu| _ Oul  Qul 0| _Oul = _R() . 0u

ot|, ot gl ot|, ot], L—R(t)(5 1)(%7 (C4)

(6 - 1)3—2‘ _ %%(r(f— 1)u) + (“ “OL D) 1> . (C.5)

Using these equations and setting

we obtain o - o
arl, Trar ) = g | B




where, by [C.2] and [C.4],

R ou 10
B= ¢~ Vae * T rmrae ™)
Then by [C.5] and [C.6],
O RW 10 .
P im0+ e ) K
1 10 ,
- m[ ag(ru(R()(f—l)—H}))] + Ku.
Hence oul 10 IR R LN .
T +—E(ruv) L—R(t){ 85(7%( ()€ — )—l—v))}—i— u.

Using [C.7] and [C.3] we obtain the following system with the new variable ¢,

ot g | o (PR OE 1 40)) | = g1 L <

ot 7‘85 ’(U+Kwp Pm
1 10 ov v 1 OP
(L—R(1)? r 0¢ (a?) "7 T LR o€

ow 0 , w 0 ow
TR Ba_f(r“’(R B¢ -1) ”))] - =37 [18_5 (a_s)]
+ kuwb((1 — )wy, — w) — {()\wff + Awmm) (1 + iw:_;p) + /\wm] w — Kw,
) 10 , ] ,
a?* 3 1R(t) _%a_g(rp(R OE-D+v))| =7 —DR(t)) 71«885 ( g];)_
+lymGy(w) — P2 3 K
5+ T Lo O +0)| = s | (75 ) |

+ kemGe(w) — (Aenn + Aepb + A )e — Ke,

6(‘9_7? + 7 _1R(t) Ea% (rm(R’(t)(§ ~ 1)+ v))}
1 19 m )
" (L—R®)? {Fa_g ( (Drn g = XempmH (o, m)a_g))]
]1€+b — Amm (1 4+ XgD(w)) — Km,
af 1 19
2 TTZRO) [Fag( )]
_ 0 Op
= {_8_£< Dfag Xl H(fm f)8_§)>]
TGy (w)f (1—fim) A f(L 4+ AaD(w) — K,

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)



8n+ 1 {18(70

n(R/(£)(€ — 1) + v))]

ot ' L—R(t) |ro¢
1 10 on Oe
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The boundary conditions at the fixed boundary £ = 1 become
v =0,
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The initial conditions take the form

R(O):‘lU=07p:f:1,w:1—a,b:g<M)’

€

e:m:n:o,p:max{o%(e_g@_m)} (C.31)
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D Parameters of the model

Most of the parameters in Table S1 are obtained from the literature cited; the remaining parameters are
estimated as described below. Proteins make up about a quarter of body volume, and the dermal tissue
protein is mainly ECM protein (5), therefore pg is approximately 0.25. We assume that the maximally allowed
ECM volume fraction is 2pg, therefore p,, is estimated as 0.5. We assume that when p > pg, the ECM pressure
depends on its density linearly with rate § = 10, which means that if ECM is compressed to twice its normal
density pg and released immediately afterwards, it will relax to py in about two hours. This is estimated from
the one dimensional ECM equation with no growth term and surface force

9p , (pv) _ _
o

Oz =pB(p—-1)+ v(0,t)=0.

whose solution satisfies v(z,t) = Bz(p—1)4 and p = p(t) = 1/(1—-0.5e=7?), with p(0) = 2 and p(2 hours) ~ 1.02.
In healthy tissue, there is no net growth of ECM, i.e., G,(fo,wo, po) = 0, therefore we can solve for A, and

obtain N )
1
po el (1 1) )
wo + Kwp Lo Pm
Similarly, the transfer rate of oxygen from blood to tissue, k,, is taken such that, at homeostasis, tissue oxygen

net growth is zero, therefore we can solve, from the equation for w,

(/\wffO + /\wm)mOwO
bo(u}b — wo) '

ko = (D.2)

Also, the maximum growth rate of fibroblast k is taken so that in normal healthy tissue fibroblasts is at steady
state fp, so that, using the equation for f,

_ N
- 1_f0/fm

Note that the process p — m — p is autocatalytic. In homeostasis this process should be such that the
density of the activated macrophages is m = 0 and therefore also p = 0. A steady state of (p,m) is the

ki (D.3)

intersection of the two nullclines of the equations for p and m, namely, k,m = 2‘; f; -+ A\pp and % = Apm.

For simplicity, we assume homeostasis is the only steady state, i.e., the only intersection of the two nullclines.
This is satisfied if and only if kfkp < Ap + Aps, and the parameter k, is chosen to abide by this inequality.

We assume that the random ”ILnotility of fibroblasts in the wound healing environment is the same as that
of macrophages, i.e., D¢ = D,,, which is much smaller than that of soluble chemicals but a little larger than
that of blood vessels. As in (4), we estimate the maximum volume fraction of macrophages, fibroblasts and
capillary tips in the wound to be 1%, so that we can take m,, = fi, = n, = 1072 g-em™3. Asin (4), we assume
that the oxygen consumption rate by fibroblasts is smaller than that by macrophages, and Ay = Awm/15.
We also assume that the extra oxygen consumption rate by the skin tissue due to the wound, Ay, (Which is a
nondimensional parameter), is equal to 2, i.e., when normalized p is equal to 1, the effect of p is to double the
intake of oxygen by fibroblasts and by activated macrophages. We assume that the growth rate of fibroblast
has the same dependence on oxygen as the synthesis of ECM, i.e., Ky, = Kyuy. The boundary flux parameter
kpp is chosen so that the normal wound heals in 10 — 15 days post wounding as observed experimentally (11).
We choose the differentiation rate of monocytes to macrophages, k,,, such that the maximum macrophage in
the wound is 6 times that of the healthy tissue, i.e., k,, = Mz% We assume that under extreme hypoxia or
hyperoxia, the death rates of cells are three times that under normoxia, i.e., A\q = 2. If we increase L to 2L,
simulation results do not change appreciably.




Table S1: Table of dimensional and nondimensionalized parameters.

Notation Dimensional Nondim Source
Lo 0.15 cm 1 (4)
T 6.25 h 1 (4)
00 0.25 1 (5)
wo 100 mmHg 1 (6)
K, 1078 g-em™3 1 (4,7)
K. 1078 g.cm™3 1 (4,7)
mo 1072 grem ™3 1 (4,7)
fo 1073 g-em™3 1 (4,8)
bo 1073 g-em™3 1 (4,9,10)
L* 0.75 cm 5 (11)
Ro 0.4 cm 8/3 (11)
Pm 0.5 2 Estimated
Kup 25 mmHg 0.25 (6,12-14)
Ky 0.25 Estimated
ko 5/16 (4)
Ap 0.1 Eqn [D.1]
I} 10 Estimated
D, 5x 1077 cm?/s 0.5 (15)
D, 107% em?/s 1 (16,17)
D, 107 ecm?/s 1 (16,17)
D, 5x 1072 (4)
Dy 5x 1072 Estimated
D, 1072 em? /s 1073 (16,18)
Dy 7 x 10719 em? /s 7x 1074 (17,19)
Xm 0.1 (4)
Xf 10-500 cm® g1 0.1 (8)
Xn 1-100 em® g=1s7! 1 (16,20)
M, 1072 g.cm™3 10 (4)
fm 1072 g-em ™3 10 4)
Ny, 1072 g-em ™3 10 (4)
A 0.1 (4)
wp 200 mmHg 2 (6)
kaw 4.39 Eqn [D.2]
Awf 0.227 (4,21)
Awm 0.185 cm3g—1s7! 4.16 (4,21)
Aww 2 Estimated
kp 1.5 Estimated
Apf 9 Estimated
Ap 4 x1075 571 0.9 (4)
kpp 4 Estimated
ke 50 (4)
Aen 90 (4)
Aeb 4 cm3g~1s7! 90 (22,23)
Ae 4 x107° 571 0.9 (24,25)
km 2.7 x10~1 Estimated
Am 2 x1076 571 4.5 x1072 (4,26)
Ad 2 Estimated
kf 5.78 x1073 Eqn [D.3]
Af 2.31 x1077 57! 5.2 x1073 (27)
Knb 2.16 x102 (4)
kn, 2.16 x102 (4,21)
Ky 556 x1076 - 1.56 2.25 x10~! (19,20, 28)
x107° 71
Ann 107! em3g~1s! 2.25 (18)
Anb 1073 em?®g~1s™ 2.25 x1072 (18)

* By increasing L the results don not change appreciably.



E Time evolution figures
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Figure S1: Normal wound healing (ov = 0): spatial distribution of cells and chemokines at different times. Blue:

t = 0; green: t = 5; red: t = 10; cyan: t = 12.5.
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Figure S2: Ischemic wound healing (o = 0.88): spatial distribution of cells and chemokines at different times.
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Blue: t = 0; green: t = 5; red: t = 10; cyan: t = 15; yellow: ¢ = 20.
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