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Supplementary Figure 1  ITC traces for the binding of CBP to (a) IRF5 (222-467) and (b) 
IRF5 (222-467) S430D.  The steeper slope observed in (b) reflects the tighter binding of CBP 
to IRF5 S430D compared with IRF5.  The thermodynamic binding parameters are provided in 
Table 1.  



 

 
 

Supplementary Figure 2  Gel exclusion chromatography and sedimentation velocity on IRF5 
(222-467) and IRF5 (222-467) S430D.  (a) Comparison of IRF5 by gel exclusion 
chromatography at a loading concentration of 200μM in the presence and absence of CBP 
(2067-2112).  In the absence of CBP (blue) the elution peak corresponds to an apparent 
mass of 37 kDa, consistent with IRF5 running as a monomer.  (IRF5 (222-467) is 30 kDa.). In 
the presence of CBP (black), the elution peak shifts by 1.5ml to a value corresponding to an 
apparent molecular mass of 87 kDa, which likely represents a complex formed from two IRF5 
molecules and two CBP molecules.  (b) IRF5 S430D at a loading concentration of 180μM in 
the presence and absence of CBP.  The elution of IRF5S430D is consistent with a slightly 
higher molecular mass from that of wild-type IRF5, suggesting reversible association.  Elution 
in the presence of CBP is consistent with a complex formed from two IRF5 molecules and 
two CBP molecules as in wild-type. (c) Sedfit distribution plots c(s) show analysis of data for 
IRF5 (black) and a phosphomimic of IRF5 S430D (blue), alone (dotted lines) and in the 
presence of excess CBP (solid lines) in sedimentation velocity runs.  IRF5 runs at a monomer 
at this concentration (6.7 μM) with 4-6% dimer.  S430D runs as a mixture of monomer and 
stable dimer at this concentration (9.5 μM) but with > 50% of the material in dimer form.  CBP 
causes a shift of all species to faster zones consistent with the formation of a 2:2 complex 
running at 3.93 s20,w for IRF5 and 3.89 s20,w for S430D.  The excess CBP is evident as slow 
zones near 1.5 s. (d) Sedfit distribution plots c(s) of IRF5 S430D at 4.2, 9.8 and 13.9 μM.  



The patterns are all bimodal and reflect a mixture of monomer and stable dimer forms.  
Normalization of DCDT+2 g(s) distributions (see supplementary Fig. 3) reveals no significant 
redistribution of these species during the experiments.  In spite of this slow equilibrium, CBP 
is able to recruit all species into a 2:2 complex (c).   
 
Analytical Ultracentrifugation Methods. Sedimentation velocity was performed at 19.7oC 
and 50 K in SEDVEL60K centerpiece by simply dilution of the stock IRF5 samples into 
dialysis buffer (20 mM HEPES, 0.1 mM EDTA, 100 mM NaCl at pH 7.3) in the presence and 
absence of 2 mM TCEP.  Data were also collected on CBP/IRF5 ratios with an excess of 
CBP.  All data were collected at 280 nm (1 average, 0.002 cm spacing) and analyzed by 
DCDT+ 2 and Sedfit 3 to estimate weight average S values and to generate g(s) and c(s) plots.  
At low protein concentration (< 10 uM) IRF5 alone sediments with concentration 
independence (S20,w = 2.36 +/- 0.02) and fitting with Sedanal 4 reveals the presence of 
predominantly monomeric IRF5 with a small amount of irreversible dimer (4–6% with or 
without TCEP).  Addition of CBP causes a significant shift of the IRF5 zone to S20,w = 3.93 +/-  
0.02.  This shift occurs as an all or none transition and reflects a tight interaction between 
IRF5 dimer and CBP.  Fitting with Sedanal is consistent with this being an IRF52CBP2 
complex.  Runs were also performed on a phosphomimic S430D of IRF5.  Alone and in the 
presence of 2 mM TCEP it runs as a mixture of monomer (or weak monomer-dimer) and 
stable dimer.  This suggests a conformational change that crosslinks and stabilizes the dimer.  
Upon the addition of excess CBP a stable S430D2CBP2 complex is formed that runs at S20,w 
= 3.89 +/-  0.04. 
 



 

 
 
Supplementary Figure 3.  (a) Sedimentation coefficient distributions g(s) for IRF5 with and 
without excess CBP.  The IRF5 data is concentration independent (< 10 μM) as shown by the 
normalized g(s) plot in panel b.  Addition of excess CBP shifts the peak consistent with tight 
complex formation; notice the superposition of the complex peak at two CBP concentrations.  
The excess CBP is seen as a trailing zone in the g(s) plots but appears as a peak in a c(s) 
plot (see Figure 1c).  (b)  Normalized g(s) distributions for IRF5 WT and S430D.  At low 
concentrations (< 10 μM) IRF5 is a monomer.  Over this same concentration range (See Fig. 
1d) S430D runs as a mixture of monomer and stable dimer.  These stable dimers are not 
influenced by the addition of 2 mM TCEP.  Addition of CBP to S430D also causes a shift of 
both species to a stable complex (panel a and  Supplementary Fig. 2c). 
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Supplementary Figure 4  Sequence alignment of the C-terminal transactivation domains of 
human IRF members that contain the interferon association domain (IAD).  Shown above the 
sequence alignment is the secondary structure based on the IRF5 crystal structure, with the IAD 
in cyan and the autoinhibitory regions in magenta. Identical residues in IRF3 – IRF9 are shown in 
red.  Hydrophobic residues within the helices 1, 3 and 4 and in the C-terminal autoinhibitory 
domain, as identified in the structure of monomeric IRF3 are highlighted in brown.  Putative 
phorphorylation sites for IRF3 and IRF5 are shown in yellow circles, with the mutated Ser 430 
shown also highlighted in yellow but outlined in a blue rectangle.  Residues involved in the 
dimeric interface of IRF5 are outlined in red rectangles. (Modified from Qin et al. 1.)   



 
Supplementary Figure 5.  Amphipathic nature of helix 5.  (a) Stereodiagram of helix 5 
(green) in IRF5 dimer.  Note the largely hydrophobic residues on the left side and mainly 
hydrophilic residues on the right side of the helix, properties shared by IRF5 and IRF3.  (b) 
Helix 5 in IRF3 monomer.  The largely hydrophobic side of helix 5 is involved in extensive 
intramolecular contacts with the CBP/p300 binding surface of IRF3.  (c) Helix 5 in the IRF5 
dimer.  Dimeric contacts primarily involve hydrophilic regions of helix 5.  The similar 
hydrophobic surface evident on the left side of helix 5 in IRF5 strongly suggests that it will 
also mask the CBP/p300 binding surface in the autoinhibited monomer of IRF5.  
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Supplementary Figure 6  Crystal structures of IRF3 and IRF5 show plasticity of 
Loop L5 (magenta). (a) Ribbon diagram of the IRF3 monomer with loop L5 (including 
C-terminus of β10) in magenta and the C-terminal autoinhibitory region in gold.  (b) 
Ribbon diagram of the IRF5 dimer, showing the different conformation of loop L5 
relative to that in the autoinhibited IRF3, which is required to avoid steric clashes with 
the partner subunit.  (c) Ribbon diagram of the structure of IRF3 in complex with CBP 
(gold).  A lattice contact with another CBP-IRF3 complex (light blue) is coupled with a 
conformational change in the L5 loop relative to that observed in the autoinhibited 
IRF5 structure (a).  This implies a substantial plasticity of Loop L5 that would allow 
IRF3 to form a dimer similar to that observed for IRF5 (b).  (Superposition of 14 loop 
L5 α-carbons between IRF5 and IRF3/CBP results in an rms deviation of 1.3Å, in 
contrast to rms deviations of 3.4 and 3.8Å for the equivalent superposition of 
monomeric IRF3 with IRF5 and the IRF3/CBP complex, respectively.)   
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