Supplemental Figure Legends

Supplemental Figure S1. Expression of *Isl1* and *Isl2* during retina development. (A-D) In situ hybridization of wild type retina sections with *Isl1* and *Isl2* probes. Compared to *Isl1* expression in RGCs and amacrine cells (arrows) (A,C), *Isl2* is only expressed in selective 30% RGCs in the GCL (B,D). (E-J) Immunolabeled retinal sections at E13.5 (E-G) and E15.5 (H-J) show the overall co-expression (arrows) of ISL1 (red) and Brb3b (green) in *Isl2*-null mice with occasional BRN3B+-only cells (open arrowhead). The anti-ISL1 immunolabeling shows an identical ISL1 expression pattern in wild type (see Fig. 1) and *Isl2*-null retina. Inserts show the enlarged views of the corresponding boxed regions. NBL, neuroblast layer; GCL, ganglion cell layer. Scale bar: 100 μm.

Supplemental Figure S2. *Isl1*-lacZ reporter expression recapitulates the expression pattern of endogenous *Isl1*. In situ hybridization, anti-ISL1 immunolabeling, and X-Gal staining of $Isl1^{lacZ/+}$ retina sections at E14.5 show the similar expression profile of *Isl1* mRNA (A), ISL1 protein (B), and *Isl1*-lacZ (C). Inserts show the enlarged views of the corresponding boxed regions. Scale bar: 100 µm.

Supplemental Figure S3. Co-occupancy of ISL1 and BRN3B on RGC promoters in E13.5 WT retina but not in *Brn3b*- null or *Isl1*- null tissues. (A) Anti-BRN3B and anti-ISL1 antibodies co-precipitate with the promoters of *Brn3b*, *Shh*, *Brn3a* and *Isl2* in E13.5 WT retina. Both antibodies do not precipitate with these promoters in *Brn3b*- null retina. Anti-ISL1 antibody does not precipitate with these promoters in cerebellum. (B) Western blot with anti-ISL1 antibody using cerebellum and retina tissue preparation. The antibody primarily recognizes a single band of ISL1 in retina but not in cerebellum, suggesting that ISL1 is not expressed in cerebellum and that the anti-ISL1-precipitated chromatin is specifically ISL1-bound DNA.

Supplemental Figure S4. Sequences of RGC-specific promoters occupied by both ISL1 and BRN3B during RGC differentiation. (A) Primer sets used to PCR amplify the precipitated promoter regions. (B) Sequences of

RGC-specific promoters flanking the Brn3-binding sites (red) and their distances from the transcription initiation sites, Potential ISL1-binding regions are indicated in blue. Identified ISL1-binding consensus is underlined. (C) Summary of the Brn3-binding sites in RGC-specific genes and the derived consensus sequence.

Supplemental Figure S5. Progenitor proliferation in E17.5 *Isl1*-null retina. *Isl1* -null retina displays a slight 17% decrease of M-phase proliferating cells as labeled by anti-pH3 (green, compare A to B; average number of pH3+ cells \pm s.d.: controls: 184.25 \pm 9.19; *Isl1*-nulls: 152.38 \pm 6.54, n=2, student t-test p<0.05.). C, D show the enlarged views of the boxed regions in A, B.

Supplemental Table S1. ISL1 and BRN3B regulate the expression of *Gap43* and *L1cam* in the retina. Real time PCR is performed with E14.5 retinas from *Isl1*-nulls, *Brn3b*-nulls and the controls. Relative expression of genes is calculated using the formula: $2^{\Delta MT-\Delta WT}$. ΔMT is the difference of cutoff cycles between the gene of interest and the control gene (β -actin) for mutants and ΔWT is that for controls. The numbers listed in the table are the average from three independent experiments.

Α

	Forward primer	Reverse primer
Brn3b	5'-GGAAACCCCTGCTCTAATC	5'-GAAACGGTCCCCTTGTCTC
Brn3a	5'-AGACGCGAAACCAACAAAGAG	5'-CTGTGAGGCAGTCAGTCCAAG
Isl2	5'-TACTATCTGGCTTCATCTCCC	5'-TGGAGTAGAGTTCTCGGATGA
Shh	5'-CACAGAGTCGGGCTTGATTAG	5'-AGGATGGATAGGGTTTTGGAG
Brn3b ORF	5'-GAGCAGCAGTTCCAGCAGCAGTG	5'-GGTGGTGGTGGCTCTTACTCTGC

В

Brn3a 5' upstream sequence (-5651 to -5500)

Shh 1st introns (+3761 ~ +3821)

CAGAGTCGGGCTTGATTAGCGGCACACGACCCAATGAATTAATAACCGGGCTGAGCTTCAA

Brn3b 5'upstream sequence (-3710 ~ -3580)

Isl2 5'upstream sequence (-6464 ~ -6129)

С

Brn3a	⊤TAATTAAT
	T TAATT CAT
	T TAATT CAT
	ATAATAAAT
Shh	T TAATT CAT
Brn3b	T TTATT G AT
Isl2	ATAATTCAA

Consensus: A T $(^{A}/_{T})$ AT T N A T

Table S1

	<i>Isl1</i> - null			Brn3b-null		
	Relative expression	Standard deviation	t-test	Relative expression	Standard deviation	t-test
Gap43	0.578	0.029	p<0.001	0.482	0.010	p<0.001
L1cam	0.690	0.017	p<0.01	0.727	0.082	p<0.05