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Bayesian Co-clustering Methodology 

 
1. The Co-clustering Regression Model 

Let 0 ),( !ttf ge , denote the expected value of the relative expression level ),(tyge  at 

time t for an individual gene g in experiment e. Assuming that the random errors )(tge!   

are standard normally distributed, we model the expression value y
ge

(t) using the 

regression model ( ) ( ) ( )ge ge ge gey t f t t! "= + . Following the methodology of [1, 2], we 

represent )(tf ge  by a linear combination of a set of basis functions, specified for each 

experiment type. To model periodic profiles, we depart from the piecewise polynomial 

representation of the earlier versions and instead consider a Fourier representation. Thus 

we have  
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with basis functions given by 
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For non-time course data, we have gege tf !=)( . To identify co-clustered genes, it is 

reasonable to use the first full cycle time period data for every gene since it is least 

affected by the loss of cell phase synchronization. Clearly, using asynchronous data 

produces noisy clusters. Moreover, if we restrict ourselves to the first period of the cell 

cycle, then it is easy to see that the RPM model of [3] can be approximated by the above 

model (1).  An advantage of using (1) is that it is linear in the unknown parameters and 

hence is easy to fit.  Thus, we can reasonable assume that the model is equivalent to the 

RPM model.   
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2. Combined cluster model 

The model-based clustering strategy assumes that for each experiment },...,2,1{ Ee! , 

genes in cluster k share the same regression function )(k
ege ff = and a common error 

variance )(22 k
ege !! = . For regression coefficients we use the Gaussian prior and for error 

variances we use the inverse gamma prior, which are commonly used conjugate priors 

[1]. The model specification is completed with a prior distribution placed on the 

clustering configuration C. Here we use a uniform prior over the space of all clustering 

configurations. To avoid outlier genes from forming stray clusters, we limited clusters to 

a minimum size of five genes. 

 

The clustering algorithm of [4] requires calculations involving * 1 1( ' )V X X I!" "
= + , the 

posterior covariance matrix of the basis function coefficients for each cluster. Here )(tX is 

a matrix whose columns are the basis functions described above and I is the identity 

matrix. Since we have a relatively large number of experiments, including some long 

time courses, these matrix inversions and subsequent matrix multiplications are 

computationally demanding. Gram-Schmidt orthonormalization of the basis functions is 

therefore used to reduce the computational burden, without changing the basic structure 

of the regression model as in [4]. 

 

3. Automatic relevancy detection for experiments within a cluster 

Since data used in this study are from independent experiments performed under varied 

conditions, there could be considerable variation among the expression profiles. 

Consequently, even though a pair of genes is theoretically co-expressed, often the 

observed data from the ten experiments may reveal that they are co-expressed in only a 

subset of the experiments and not necessarily in all ten experiments.  Thus one of our 

goals is to identify subsets of co-expressed genes even though, due to variations among 

the observed data, they may not necessarily be co-expressed in all ten experiments.  
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The above problem can be formulated within the Bayesian framework by using a mixture 

distribution for the error variance )(2 k
e! . If an experiment does not demonstrate co-

expression of the genes in cluster k, then the corresponding data suggest a regression 

model with a relatively high variance. We consider a two component mixture model, with 

both components modeled by inverse-gamma distribution ),(I !"# , the conjugate prior. 

Hence we propose the following model 

 2 ~ I ( , ) (1 )I ( ', ')
e e e
w w! " # " #$ + % $  

where )','( ),,( !"!"  are chosen to reflect low and high variance, respectively. In our 

application we chose 1'== !! , and 10',5.0 == !! . The resulting probability density 

functions for the two components are shown in Figure S5.  

 

Let )(k
ez be a latent, unobserved variable (similar to the unknown clustering) which 

determines whether )(2 k
e! is drawn from the first or second component of the mixture, 

with probabilities w
e
 and 1−w

e
 respectively. Thus our model space and the search space 

are extended to finding the optimal clustering and component allocations ),( zC  where 

z is a vector comprised of the component allocations }{ )(k
ez  for experiment e and cluster 

k  inC . Based on prior assumptions [5] about the relative influences of regulatory and 

cell cycle experiments, for symmetry we set ew equal to 0.8 and 0.2 respectively for these 

two types. 

 

4. Clustering Algorithm 

Given the observed data, the above probabilistic model results in a posterior distribution 

on the clustering and variance component allocations, given up to proportionality by, 

 (2)                                                   ),,|()|()(),( zCypCzpCpzC =!  

where the final term in the product is the density of all of the observed data given ),( zC . 

We then use !  as the objective function for our agglomerative clustering procedure. 
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5. Agglomerative clustering 

Although the statistical model described here is an extension of [1, 4], the agglomerative 

clustering algorithm of [4] can still be applied here. Higher potential scores !  can be 

achieved through various schemes to relocate genes to different clusters after 

agglomeration. One such method is used here, whilst full details of a range of methods 

will appear in a separate paper. The revised agglomerative clustering algorithm for N 

genes proceeds as follows: 

•  Step 1: Start with C=N clusters, each cluster containing the expression levels for 

one gene. Calculate the potential N! using (2). 

• Step 2: Let ),( zC  be the current configuration. For each pair of clusters Clk !, , 

let ),( lk
C  represent the hypothetical clustering resulting from their merger and 

),( lk
z , the corresponding variance component allocations which 

maximize ),( ),(),( lklk
zC! . Calculate  
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!
==  (3) 

•  Step 3: For each cluster k, identify the closest other cluster according to the metric 

in (3) and the corresponding maximum closeness value  

 
kl

l

ck   maxarg'=  ,    
'

 
kkk
cc =  . 

•  Step 4: Find the cluster k $ with largest c
k
 value, and merge with cluster k $' to form a 

new clusterk $. Set C=C−1 and re-label the other remaining clusters accordingly. Let 

Δ={k $}.  

•  Step 5: Following this merger, find the gene whose transfer into a different cluster 

now causes the biggest increase in π. Move the gene to this higher probability 

cluster. If the two clusters involved were l and l', let Δ=Δ∪{l,l'}.  

•  Step 6: Repeat Step 5 until no gene can be transferred to a different cluster and still 

cause an increase to π.  

•  Step 7: Calculate the revised posterior kernel value π
C
 for the current 

configuration.  
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•  Step 8: Take each cluster k∈Δ, and for each l∈Δ calculate the closeness to cluster 

k, c
kl

=c
lk

, and hence identify the new nearest cluster to k, k $'.  

•  Step 9: Repeat Steps 3-8 until C=1.  

•  Step 10: Looking back over the clusterings visited, find the number of clusters C 

in the hierarchy maximizing the posterior distribution, argmax
C
 π

C
. This is our 

optimal configuration (C∗,z∗).  

 

Note that Step 9 determines the number of clusters in our optimal clustering. To avoid 

small clusters which may be difficult to interpret, we limited this analysis to clusters 

containing at least 5 genes. 
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Supplementary Figures and Tables 

 

 

 

Figure S1. Determination of optimal number of clusters. The log (marginal) likelihood 

score achieved by the clustering algorithm is plotted against the number of clusters.  The 

red line represents the optimal number of clusters (C=31). 
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Figure S2. Overall regulatory signature of every cluster. For every regulatory and time 

course experiment, median expression of all genes within each of the 31 clusters is 

plotted.  
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Figure S3. Formalizing a relaxed consensus-building strategy. A two component 

mixture model of experiment-wise error variances allows an experiment to agree/disagree 

with a co-expressed clustering result based on low/high variance.
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Figure S4. Inferred transcription factor activities. The curves represent the activities of 

two transcription factors as log10(TFA) values computed with Network Component 

Analysis (NCA) of Peng Cdc25 data. Activities of the TFs Fkh2 and SPBC19G7.04 peak 

and trough at different phases of the cell cycle with high correlation. The colored band in 

the middle represents cell cycle phases: M (purple), G1 (orange), S (blue), G2 (green). 
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Figure S5.  Putative TF binding sites in the promoter sequences of G2/M genes. Red 

and blue spikes represent statistically significant motif matches for potential forkhead and 

HMG-1 box binding sites in the upstream sequences of genes from Cluster 4 (see Table 2 

in main text). A black triangle marks the end of an intergenic region.  
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Table S1.  Average signal to noise ratio (SNR) across all genes and weights for 

GRNInfer gene network reconstruction. SNR is defined as the regression sum of 

squares divided by the error sum of squares.  

 

Exp Average SNR Weight

SNR(Rust cdc 2) 57.60720918 0.220836

SNR(Rust cdc25 1) 64.65589491 0.247857

SNR(Rust Elu 2) 48.37108429 0.185429

SNR(Rust Elu 3) 42.1047688 0.161407

SNR(Rust Elut 1) 48.12120962 0.184471  
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