
Bayesian Model Averaging (BMA) 
 
When classifying samples on microarray data, our goal is to identify a small set of predictive genes. In the 
BMA framework, small sets of predictive genes are called “models”. In microarray analysis, there are 
typically many “models” (or sets of predictive genes) that fit the data well. Bayesian Model Averaging 
(BMA) takes model uncertainty into consideration by computing the weighted average of the posterior 
probabilities that a test sample belongs to a given class over multiple “good” models.1,2 In the weighted 
average calculations, the weight of each model is equal to the posterior probability of the model, and 
hence, proportional to the goodness of fit of the model. The set of “good” models (and hence, the number 
of predictive genes and models) used in the weighted average calculations is chosen by first applying the 
leaps and bounds algorithm, and then the Occam’s window method. When the number of genes is small 
(< 40), the leaps and bounds algorithm 3 efficiently identifies a reduced set of “good” models Mk and 
returns the best nbest models of each size (nbest = 10 in this study).1 The Occam’s window method 
chooses a set of parsimonious and data-supported models by discarding models that are much less likely 
than the best model supported by the data.4 We used logistic regression to compute the probability that a 
test sample belongs to the given class under each model Mk, and the Bayesian Information Criterion 
(BIC) to approximate the posterior probability of a model Mk.1,5,6 
 
However, typical microarray analyses involve a large number of genes (>> 40) such that the leaps and 
bounds algorithm becomes inefficient, and the number of genes is usually much greater than the number 
of patient samples. Therefore, we developed the iterative BMA algorithm 7 in which we start by ranking 
the genes using a univariate measure such as the ratio of between-group to within-group sum of squares 
(BSS/WSS).8 In this initial preprocessing step, genes with large BSS/WSS ratios (i.e., genes with 
relatively large variation between classes and relatively small variation within classes) receive high 
rankings. We then apply the leaps and bounds algorithm and Occam’s window method to the top 30 
ranked genes. Then genes that were assigned low posterior probabilities (< 5%) are removed. Suppose m 
genes are removed. The next m genes from the rank ordered BSS/WSS ratios are added back to the set of 
genes so that we maintain a window of 30 genes and apply leaps and bounds again. These steps of gene 
swaps and iterative applications of leaps and bounds are continued until all genes are subsequently 
considered. The iterative BMA algorithm is available as a bioconductor package called “iterative BMA” 
and part of MeV+R.9 We showed that this iterative BMA method worked very well in predicting out-of-
sample test cases for several datasets, and selected small numbers of genes in our previous work.7 
 
In this study, we applied the iterative BMA algorithm to the 2,612 differentially expressed genes derived 
from ANOVA analysis using a posterior probability threshold of 5%. In the BMA framework, we 
distinguished between two different types of posterior probabilities: posterior probabilities of genes and 
posterior probabilities of models. Posterior probabilities of models are derived from the leaps and bounds 
and Occam’s window steps. We define the posterior probabilities of a gene as the sum of the posterior 
probabilities of all the selected models containing the gene of interest. Using the 5% posterior probability 
threshold for genes, genes with posterior probabilities below 5% are removed in each of the iterative step. 
Since we threshold on the posterior probabilities of genes (but not of models), the posterior probabilities 
of the selected models are allowed to fall below 5%. 
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Comparison of BMA results to other methods 
 
The iterative BMA algorithm selected 6 signature genes (see Table 1 in the main manuscript) to predict 
CML progression. Here, we compared the performance of iterative BMA to other widely-used 
computational methods. We evaluated different methods using 3-fold cross validation (CV) on the CML 
microarray data. Specifically, we used the same random splits (2/3 training and 1/3 testing) over 100 cross 
validation runs to evaluate performance of the following alternative methods to BMA: 

1. Iterative BMA (our selected approach) 
o Approach: BMA selected 6 signature genes averaged over 21 models. The numbers of 

genes and models are determined automatically by the algorithm. See the main 
manuscript for more details. 

o Results: average brier score = 0.21 over 100 CV runs. In particular, 43 (out of 100 runs) 
have brier scores < 0.1 and only 2 CV runs have brier scores > 0.9. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Logistic regression using the top P BSS/WSS genes in a single model 

o Approach: We first selected the top P genes (P=6, 10, 30) using the between-group to 
within group sum of squares (BSS/WSS) ratios, and then applied logistic regression using 
the P selected genes in a single model. 

o Results using P=6: average brier score = 0.375 over 100 CV runs. In particular, 68 (out of 
100 runs) have brier scores < 0.1 and 24 CV runs have brier scores > 0.9. In general, this 
method gives rise to a more extreme distribution of brier scores than BMA. 

o Results using P=10: average brier score = 0.310 over 100 CV runs. In particular, 74 (out 
of 100 runs) have brier scores < 0.1 and 21 CV runs have brier scores > 0.9. In general, 
this method gives rise to a more extreme distribution of brier scores than BMA. 

o Results using P=30: average brier score = 0.339 over 100 CV runs. In particular, 70 (out 
of 100 runs) have brier scores < 0.1 and 20 CV runs have brier scores > 0.9. In general, 
this method gives rise to a more extreme distribution of brier scores than BMA. 

 
 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3. Logistic regression using each of the top P BSS/WSS genes in single-gene models 

o Approach: We first selected the top 30 genes using the between-group to within group 
sum of squares (BSS/WSS) ratios, and then applied logistic regression to single-gene 
models consisting of each of these 30 genes. 

o Results: average brier score = 0.749 over 100 CV runs. Note that there are a total of 3000 
single-gene models over 100 CV runs. In general, this method gives rise to a more 
extreme distribution of brier scores than BMA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Positional Gene Enrichment (PGE) analysis using 2,612 genes derived from ANOVA analysis 
 
We repeated the PGE analysis using the 2,612 differentially expressed genes derived from the ANOVA 
analysis, and obtained similar results to that reported in the main manuscript. As shown in Table S1, we 
observed chromosomal enrichment on the regions of chromosome 12 on which 3 of our 6 signature genes 
falls on (12p13, 12q23 and 12q24). Note that PGE does not exclude overlapping regions in its analyses. 
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