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NONCONCAVE PENALIZED LIKELIHOOD MODELS

By Hui Zou and Runze Li

University of Minnesota and The Pennsylvania State University

We would like to take this opportunity to thank the discussants

for their thoughtful comments and encouragements on our work. The

discussants raised a number of issues from theoretical as well as com-

putational perspectives. Our rejoinder will try to provide some in-

sights into these issues and address specific questions asked by the

discussants.

Most traditional variable selection criteria, such as the AIC and the BIC,

are (or are asymptotically equivalent to) the penalized likelihood with the

L0 penalty, namely, pλ(|β|) = 1
2
λ2I(|β| 6= 0), and with appropriate values

of λ (Fan & Li 2006). In general, the optimization of the L0-penalized like-

lihood function via exhaustive search over all subset models is an NP-hard

computational problem. Donoho & Huo (2001) and Donoho & Elad (2003)

show that, under some conditions, the solution to the L0-penalized problem

can be found by solving a convex optimization problem of minimizing the

L1-norm of the coefficients, when the solution is sufficiently sparse. In other

words, the NP-hard best subset variable selection can be solved by efficient

convex optimization algorithms under the sparsity assumption. This sheds

light on variable selection for high-dimensional models, and motivates us to

use continuous penalties, such as the L1 penalty, rather than the discontinu-

ous penalties, including the L0 penalty. The penalized likelihood procedure
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with the L1 penalty coincides with LASSO. In the same spirit of LASSO, the

penalized likelihood with a nonconcave penalty, such as the SCAD penalty,

has been proposed for variable selection in Fan and Li (2001). LASSO and

the SCAD represent the two main streams of penalization method for vari-

able selection in the recent literature. Although both methods operate as

continuous thresholding rules, they appear to be very different theoretically

and computationally. The SCAD is asymptotically unbiased and enjoys the

oracle properties which LASSO can not possess (Zou 2006). On the other

hand, LASSO uses the L1 penalty as opposed to the concave SCAD penalty,

thus being computationally more friendly than the SCAD.

Computational efficiency of a statistical method determines its popularity

to a great extent. Interestingly, this argument is evidenced by the evolution

of LASSO. Although the original LASSO was shown to be a promising vari-

able selection method in Tibshirani (1996), it did not become popular in

statistical practice before 2002 due to the relative inefficiency of the origi-

nal LASSO algorithm (Madigan & Greg 2004). The situation dramatically

changed in 2002 when Efron et al. (2004) invented the LARS algorithm

which can compute the entire LASSO solution paths in a very efficient fash-

ion. Since then, LASSO has enjoyed its enormous popularity.

The LQA algorithm by Fan and Li (2001) provides a unified view of

LASSO and the SCAD by treating them as iteratively re-weighted ridge re-

gression. However, the unification based on LQA is not very satisfactory for

two reasons. First, LASSO enthusiasts may not accept the LQA algorithm as

the algorithm for computing LASSO, given the extremely successful LARS

algorithm. Secondly and more importantly, re-weighted ridge regression can-
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not automatically produce a sparse solution. One has to fill the conceptual

gap by artificially thresholding small values to zero within each iteration.

As discussed in our paper, this practice is not very satisfactory.

The LLA algorithm presented in our work provides a better unification of

LASSO and the SCAD, because within each iteration the solution naturally

adopts a sparse representation. Putting LASSO in the LLA framework, we

see that the solution converges after the first step. For the SCAD, although

multiple steps are needed before convergence, the one-step estimates work as

well as the final estimates as long as the initial solution is a root-n consistent

estimator. We have shown that the LARS algorithm can be exploited to

solve the one-step sparse estimator. Considering that the one-step sparse

estimator enjoys the oracle properties, we hope our results would persuade

more people to use the one-step sparse estimation idea.

If one accepts the unification of LASSO and the SCAD (and many other

nonconcave penalized methods), then it is helpful to bring the adaptive

LASSO (Zou 2006) into the big picture. The adaptive LASSO was proposed

to fix several theoretical drawbacks of LASSO. Meinshausen & Bühlmann

(2006) showed that LASSO selection can be consistent under the neighbor-

hood stability condition. Later, Zou (2006) derived a necessary condition for

LASSO selection to be consistent and the necessary condition was shown to

be equivalent to the neighborhood stability condition (Zhao & Yu 2006).

However, the neighborhood stability condition is quite strong and difficult

to check in practice. We could only hope the condition holds when apply-

ing LASSO to do variable selection. Furthermore, LASSO cannot have the

oracle properties of the SCAD. To overcome these difficulties, Zou (2006)
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proposed using the adaptively weighted L1 penalty to replace the L1 penalty

in LASSO, and the modified LASSO was named the adaptive LASSO. Con-

sider the penalized least squares. The adaptive LASSO is formulated as

follows

β̂(AdaLasso) = arg min
β

‖y − Xβ‖2 +
p∑

j=1

|β̂0
j |

−γ |βj |,

where β̂
0
is a root-n estimator. Zou (2006) suggested to pick γ from {0.5, 1, 2}

by cross-validation. As pointed out by Bühlmann and Meier, we could view

β̂(AdaLasso) as the one-step estimator for some Type 1 penalty function.

For instance, for γ = 0.5, the penalty function is the Bridge penalty L0.5 and

for γ = 1, the penalty function is the log-penalty. Thus, we happily see that

the LLA framework tightly connects the three sparse estimation techniques.

Based on our experience, often the adaptive LASSO with γ ≥ 1 gives the best

performance. However, we may feel uncomfortable to regard the adaptive

LASSSO as the one-step estimator when γ > 1, because the corresponding

Type 1 penalty should be pλ(t) = λ
1−γ

|t|1−γ which is negative! We have

not seen any use of a negative penalty function in the literature. It is hard

to imagine that one would try to solve a negatively penalized least-squares

problem in the first place.

Both Meng and Bühlmann & Meier have suggested the possibility to go

beyond the one-step estimator. Meng worries about the statement “provided

that the initial estimators are reasonably good” and suggests that multiple-

step estimators provide some safety-net for guarding against accidental “un-

reasonable” starting points. We in general agree with Meng. However, we

would also like to point out that, unlike in some general-purpose iterative

optimization algorithms, we do often have a good initial estimator in the con-
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text of one-step sparse estimation. Although in the paper we only considered

using the ordinary MLE as the initial estimator for simplicity, practically

some regularized estimators such as LASSO or the Elastic Net could yield

better one-step estimators. In fact, Bühlmann & Meier have demonstrated

the very competitive performance of the one-step estimator with LASSO

as the initial estimates. Meng provides some Bayesian-flavored explanation

to the improvement of the one-step estimator over the final estimator by

making a connection to a similar phenomenon appeared in the EM litera-

ture. The analogy is quite natural since the LLA algorithm is shown to be

equivalent to an EM algorithm in our paper. Here we try to understand the

outperformance phenomenon from a different angle. First of all, it is easy

to see that the one-step estimator would not outperform the fully-iterated

estimator if the initial estimator was not good. Secondly, once a good initial

estimator is used in the LLA algorithm, our theory says that the one-step

estimator achieves the asymptotic efficiency of the final estimator. After

that, the iteration could add extra variability into the estimator and even-

tually increase the overall the mean squared error. This argument is not

very precise, but similar conclusions have been made for other iterative op-

timization algorithms such as boosting. Boosting minimizes an empirical loss

function via iterative functional gradient decent. It is now well known that

boosting forever can increase the misclassification error (Hastie, Tibshirani

& Friedman 2001), and thus early stopping is necessary to avoid over-fitting

(Zhang & Yu 2005). Using the one-step estimator in the LLA algorithm is

similar to using the early-stopping rule in boosting.

Bühlmann & Meier suggest a new multiple-step estimator named MSA-
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LASSO. Their proposal is very interesting as demonstrated in their simu-

lation study. We think MSA-LASSO can be regarded as an adaptive way

to search for the best initial estimator in the one-step paradigm. What is

interesting is that the one-step estimation idea itself is used in the adaptive

search. We agree with them that reducing the number of false positive is

perhaps more important than reducing prediction errors in high-dimensional

data analysis. Thus, the simulation study indicates the promising potential

of MSA-LASSO in real applications.

Fan & Li (2001) and Fan & Peng (2004) established the existence of a

local minimizer of the nonconcave penalized likelihood which holds the opti-

mal oracle properties. However, what is left to be shown is whether the final

estimator from the LQA algorithm always finds the desired local minimizer.

This issue does not exist any more in the one-step sparse estimation and the

LLA algorithm. Zhang considers another innovative way to bypass the local

minimizer issue. Zhang’s idea is to modify the SCAD function such that

the new penalty function retains the shape of the SCAD penalty but has

the smallest maximum concavity. By controlling the maximum concavity,

one could establish some convexity conditions to guarantee the convexity of

the optimization criterion in the region of interests. For example, if we are

only interested in a sparse model with at most d∗/2 variables, then Zhang

shows that the sparse convexity condition (3.2) guarantees the solution is

the unique local minimizer. We think Zhang’s MC+ method provides deep

and new insights into the nonconcave penalized models. In addition, Zhang

also proposes the PLUS algorithm to efficiently compute the unique local

minimizer. If viewing the MCP as a Type 2 penalty, we can use the LLA
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algorithm to compute the MC+ solution for a fixed penalization parame-

ter. Zhang shows that the PLUS algorithm can compute the solution paths,

which is a remarkable achievement in our opinion. Overall, both Zhang’s

idea and ours share an important common theme, that is, effectively ex-

ploiting convexity in maximizing nonconcave penalized likelihood. We agree

with Bühlman and Meier that Type 1 penalty functions may enjoy better

computational efficiency in the one-step estimation paradigm, however, as

demonstrated by Zhang, Type 2 penalty functions may enjoy some nice

properties.

In our paper we have presented a hierarchical Bayesian construction in

which the corresponding EM algorithm is exactly the LLA algorithm for

a large class of concave penalty functions. Our original goal was to use

this result to establish the statistical foundation for the LLA algorithm.

However, as outsiders (to the EM community), we did not further explore the

LLA=EM result. Further research on this topic is certainly of interest. We

agree with Meng that it is somewhat careless to jump to the conclusion based

on Theorem 3 that MM algorithms are more flexible than EM algorithms. It

is very possible that more skilled statisticians can recast the LLA algorithm

for the SCAD as an EM algorithm by a cleverer construction.

On the other hand, we are glad to see our ignorance triggered some very

intriguing discussion on a Bayesian approach to variable selection that is

connected to but different from the penalized likelihood approach. The con-

nection is nicely summarized in Meng’s sentence: “using penalized likelihood

enjoys the Bayesian fruits without paying the B-club fee”. In the B-club,

ridge regression and LASSO are the MAPS with Gaussian and Laplace pri-
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ors, respectively. However, pena-likelihoodists also bring some new fruit to

the B-club. For example, our Bayesian friends may regard the SCAD as the

MAP using a SCAD prior (the density is the exponential of negative SCAD

penalty function). But the SCAD prior was not on the B-club menu when

Fan and Li (2001) invented the SCAD estimator. Meng suggests that a clas-

sical Bayesian strategy to attack the variable selection problem would start

with a prior which puts non-trivial mass at zero. The mixture formulation

of such a prior has been studied in various papers. Meng also directs our at-

tention to using the posterior median instead of the usual posterior mode to

achieve sparsity. We find his arguments are quite intriguing and eye-opening.

Barbieri & Berger (2004) have shown that under the Bayesian approach, the

optimal prediction model is the median probability model, and is not always

the model with highest posterior probability. Two papers deliver strikingly

similar messages to advocate the use of posterior median, although the mean-

ing of posterior median is not exactly the same in two papers. Nevertheless,

these results seem to indicate that the penalized likelihood solution may not

necessarily correspond to the optimal Bayesian solution.

Finally, we agree with Meng that the Bayesian approach allows us to gain

probabilistic insights via the full probabilistic modeling. Without paying the

B-club fee and thus being outsiders, we seem to have difficulty in specifying a

meaningful prior for some classes of semiparametric regression models. The

penalized likelihood approach can be naturally extended for the partially lin-

ear models and generalized varying coefficient partially linear models, two

classes of popular semiparametric regression models (Fan & Li, 2004, and Li

& Liang, 2007), although here we are not arguing that the penalized likeli-
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hood is intrinsically more flexible than the Bayesian approach. Furthermore,

in many applications, such as the real data example presented by Bühlmann

and Meier, it is very likely that the penalized likelihood is computationally

more appealing than the existing Bayesian variable selection procedures.
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