SUPPORTING ONLINE MATERIAL

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Reproducibility of Positive Ion Mode (MALDI-TOF & MALDI-FITCR) Phospholipid Imaging Data. Each column represents a different day 8 implantation site each from a different mouse. Each row represents a unique potassiated phospholipid ([M+K]⁺) and how it localizes in each of the 8 different implantation sites. SM, sphingomyelin; PC, phosphatidylcholine; MALDI, Matrix-Assisted Laser Desorption/Ionization; TOF, Time-of-flight; FTICR, Fourier Transform Ion Cyclotron Resonance.

Supplementary Figure 2. Reproducibility of Negative Ion Mode (MALDI-TOF & MALDI-FITCR) Phospholipid Imaging Data. Each row represents a different day 8 implantation site each from a different mouse. Each column represents a unique phospholipid ([M-H]⁻) and how it localizes in each of the 4 different implantation sites. PE, phosphatidylethanolamine; PEp, phosphatidylethanolamine plasmalogen; PI, phosphatidylinositol; LPI, lysophosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; MALDI, Matrix-Assisted Laser Desorption/Ionization; TOF, Time-of-flight; FTICR, Fourier Transform Ion Cyclotron Resonance.

Supplementary Figure 3. Reproducibility of MALDI-FTICR IMS analysis of embryo implantation in the mouse uterus on day 6 of pregnancy. (a) This picture shows a mouse uterus on day 6 of pregnancy and an enlargement of the implantation site which was sectioned. (b) The optical images of the 9 serial center sections (*left*) with corresponding 150 μ m lateral resolution MALDI-FTICR images (*right*). Phospholipid identities ([M+K]⁺) are listed above their respective columns. Each column is set to the same relative intensity scale. SM, Sphingomyelin; PC, phosphatidylcholine; MALDI, MatrixAssisted Laser Desorption/Ionization; FTICR, Fourier Transform Ion Cyclotron Resonance; AM, antimesometrial pole; M, mesometrial pole.

Supplementary Figure 4. A Look at Positive Ion Mode MALDI-TOF Image Spectra. All spectra is from representative "top" and "bottom" areas of a day 8 implantation site which are depicted as a green and blue circles on the optical image, respectively. Potassiated [M+K]⁺ peaks were used to reconstitute images. SM, sphingomyelin; PC, phosphatidylcholine; M, mesometrial; AM, antimesometrial.

Supplementary Figure 5. A Look at Negative Ion Mode MALDI-TOF Image Spectra. All spectra is from representative "top" and "bottom" areas of a day 8 implantation site which are depicted as a green and blue circles on the optical image, respectively. PE, phosphatidylethanolamine; PEp, phosphatidylethanolamine plasmalogen; PI, phosphatidylinositol; LPI, lysophosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; M, mesometrial; AM, antimesometrial.

Supplementary Figure 6. Identification of isobaric phospholipid species in day 8 implantation sites using high resolution MALDI-FTICR IMS. MALDI-TOF images (*top*) representative of spectral peaks 100-200 mDa in width. MALDI-FTICR images (*bottom*) representative of spectral peaks 10-20 mDa in width. As an example of MALDI-FTICR spectra we have included a single FTICR spectrum (20 shots) underneath the corresponding FTICR images. The laser spot (purple spot) where this spectrum was obtained is denoted by a red circle on the matrix coated optical image. PC, phosphatidylcholine.

Supplementary Figure 7. MALDI-MS/MS spectra. (a) Fragmentation spectra of PI 36:2 in negative ion mode. (b) Fragmentation spectra of PC 36:2 in positive ion mode [matrix was doped with 100 mM lithium chloride]. GPIns (PI), phosphatidylinositol; GPC (PC), phosphatidylcholine.

(b)

(a)

 $\xrightarrow{\text{Sectioned}}$

(b)

Supplementary Table 1. Positive Ion Mode MALDI-MS/MS Data

Assignment of lipid molecular species in MS/MS positive ion mode

Class	Molecular species (C1 acyl chain/ C2 acyl chain)	lon Type	m/z ^a	Lithium induced MS/MS Peaks ^
SM	16:0	[M+H] ⁺	703.573	650
		[M+Na] ⁺	725.555	
		$[M+K]^+$	741.529	
PC	32:0(16:0/ 16:0)	$[M+H]^+$	734.568	681, 551, 557, 484, 425, 478
		[M+Na]⁺	756.551	
		$[M+K]^+$	772.526	
PC	34:0(16:0/ 18:0)	$[M+H]^+$	762.600	709, 579, 585, 484, 425, 512, 506, 453
		[M+Na]⁺	784.581	
		$[M+K]^+$	800.554	
PC	34:1(16:0/ 18:1)	$[M+H]^+$	760.584	707, 583, 577, 510, 451, 478, 484, 425
		[M+Na]⁺	782.564	
		$[M+K]^{+}$	798.539	
PC	36:1(18:0/ 18:1)	$[M+H]^+$	788.614	735, 611, 605, 510, 451, 506
		[M+Na]⁺	810.594	
		$[M+K]^+$	826.569	
PC	34:2(16:0/ 18:2)	$[M+H]^+$	758.568	705, 581, 575, 508, 449, 478, 484, 425, 502
		[M+Na] ⁺	780.548	
		$[M+K]^+$	796.524	
PC	36:2(18:0/ 18:2)	$[M+H]^+$	786.600	733, 609, 603, 508, 449, 506, 512, 453, 502
		[M+Na]⁺	808.581	
		$[M+K]^{+}$	824.554	
PC	36:4(16:0/ 20:4)	$[M+H]^+$	hidden by 34:1 Na+	729, 605, 599, 532, 473, 478, 425, 484
		[M+Na]⁺	804.550	
		$[M+K]^+$	820.524	
PC	38:4(18:0/ 20:4)	$[M+H]^+$	no peak	633, 757, 627, 532, 473, 506, 526, 512, 453
		[M+Na]⁺	832.580	
		$[M+K]^+$	848.554	
PC	40:6(18:0/ 22:6)	$[M+H]^+$	834.596	781, 657, 651, 556, 497, 506, 453, 512
		[M+Na]⁺	856.581	
		$[M+K]^+$	872.554	

^a Data acquired on a MALDI-FTICR Mass Spectrometer

^ arrangement - highest intensity ion (left) to lowest intensity ion (right) in the MALDI-MS/MS spectra (decimal values not included) Note: All positive ion mode images depict the potassiated [M+K]⁺ form of each phospholipid species since they had the highest intensity in this study

Class	m/z ^a	MS/MS Peaks ^	Molecular species (C1 acyl chain/ C2 acyl chain)				
LPI	599.332	283, 419, 315	18:0				
PE	716.528	281, 255, 452, 478	34:1(16:0/ 18:1)				
PG	747.521	281, 255, 391, 465, 483, 491, 509	34:1(16:0/ 18:1)				
PS	788.551	701, 419, 283, 417, 504	36:1(18:0/ 18:1)				
PI	857.522	553, 391, 571, 303, 255, 439, 601, 297	36:4(16:0/ 20:4)				
PI	885.553	581, 419, 283, 599, 601, 303, 439, 297, 619	38:4(18:0/ 20:4)				
PE	764.529	303, 281, 478	38:5(18:1/ 20:4)				
PI	883.541	579, 417, 281, 597, 601, 303, 297, 439, 619	38:5(18:1/ 20:4)				
РЕр	750.549	331, 436	38:4(16:0p/ 22:4)				
PI	837.556	581, 419, 283, 553, 599, 391, 297	34:0(18:0/ 16:0)				
PI	833.523	553, 391, 577, 255, 571, 279, 297	34:2(16:0/ 18:2)				
PI	861.558	581, 419, 283, 577, 599, 415, 279, 297	36:2(18:0/ 18:2)				
PS	786.534	699, 419, 283, 415,279	36:2(18:0/ 18:2)				
РЕр	746.517	327, 436, 418	38:6(16:0p/ 22:6)				
PI	909.556	581, 419, 283, 599, 625, 297, 327	40:6(18:0/ 22:6)				
PE	742.543	279, 283, 281, 480, 478	36:2(18:0/ 18:2 , 18:1/ 18:1)*				
PE	770.575	279, 283, 281, 460, 508, 307	38:2(20:0/ 18:2 , 18:0/ 20:2 , 18:1/ 20:1)*				

Supplementary Table 2. Negative Ion Mode MALDI-MS/MS Data

Assignment of lipid molecular species in MS/MS negative ion mode

^a Data acquired on a MALDI-FTICR Mass Spectrometer

^ arrangement - highest intensity ion (left) to lowest intensity ion (right) in the MALDI-MS/MS spectra (decimal values not included)

* acyl chain identities confirmed by MS/MS imaging

Supplementary Table 3. LC-MS/MS Data Predominantly bottom expression (AM pole)

weights (mg tissue):	15	15	15	14.5	15	15
values below are ng lipid/mg tissue	top1	top2	topM	bot1	bot2	BotM
GPA(36:2)	6	5.6	5.2	8.2	10.8	6.1
GPA(38:4)	4.6	4.3	4.2	6.1	6.7	5.7
GPA(40:6)	12.9	13.4	11.2	19.7	18.9	13.9
GPCho(32:1e)/GPCho(32:0p)	1.1	0.6	1.1	1.9	1.7	1.3
GPCho(34:2)*	44.4	41.1	43.6	55.2	55.4	50.9
GPCho(36:4)*	71.9	69.0	73.7	97.1	67.2	83.6
GPCho(36:4p)	3.5	2	4.2	5.1	5.1	5.4
GPCho(38:4)	166.1	157.7	152.3	160.1	177.5	168.7
GPCho(38:6e)/GPCho(38:5p)	5	4.4	5.1	6.8	13.1	7
GPCho(40:6)*	77.2	67.8	79.9	80.1	133.9	83.9
GPEtn(34:2)	6.4	6.5	5.5	7.2	6.4	8
GPEtn(36:0)	41.3	30.2	40.9	52.2	62.7	43.3
GPEtn(36:4e)/GPEtn(36:3p)	4.4	2.8	4	5.3	4.7	4.6
GPEtn(38:4)	81.2	76.5	71.3	97	80.8	94.4
GPGro(36:3)	16.7	14.1	15.3	21.1	30.5	17.5
GPGro(36:4)	10.6	8.6	8.8	18.1	26.7	14.5
GPGro(38:1)	1.4	1	1.3	1.8	2.5	1.5
GPGro(42:10)	4.9	4	5	8.1	14.4	7
GPGro(44:10)	4.2	3.3	3.8	4.8	6.4	4.3
GPGro(44:11)	6.5	5.2	6.5	10.1	10.5	8.2
GPGro(44:12)	21.3	16.4	21.1	31	39.5	27.2
GPIns(32:0)	0.3	0.5	0.4	1	1.2	1.1
GPIns(34:1)	3.9	3.6	3.4	6.2	9	6.5
GPIns(34:2)*	4.3	3.9	4.5	11.4	17.6	9.9
GPIns(36:1)	1.6	1.7	1.9	4.1	5.4	3.8
GPIns(36:2)	6.2	6	6.6	16	22.1	13.2
GPIns(38:6)	1.7	1.5	1.3	2.9	3	2.4
GPIns(40:4)	1.8	1.7	1.9	2.6	2	2.3
GPIns(40:6)*	2.4	2.3	2.5	4.7	5.4	4
GPSer(38:4)	49.8	48.4	44.2	66.4	61.1	50.6
GPSer(42:8)	0.8	0.4	0	0.9	1.2	0.8
GPThr(38:4)	2.4	2.7	2.5	3.8	3.2	3

*LC-MS/MS data correlates with MALDI images

GPCho (PC) = phosphatidylcholine, GPEtn (PE) = phosphatidylethanolamine, GPGro (PG) = phosphatidylglycerol, GPIns (PI) = phosphatidylinositol, GPSer (PS) = phosphatidylserine

Supplementary Table 3. LC-MS/MS Data Predominantly top expression (M pole)

weights (mg tissue):	15	15	15	14.5	15	15
values below are ng lipid/mg tissue	top1	top2	topM	bot1	bot2	BotM
GPA(32:1)	0.9	0.7	0.8	0.6	0	0
GPA(34:1)	4.6	4	4	3.4	3.8	2.6
GPCho(30:0)	10.9	10.7	10.2	8.9	6.9	7.3
GPCho(32:1)	30.8	29.7	29.5	23.7	20.4	20.3
GPCho(34:0)	19.4	17	19.5	14.4	12.5	14.4
GPCho(34:0e)	2.5	2	2.2	1.5	1.8	1.4
GPCho(34:1)*	57	55.7	56.5	46	33.3	42.1
GPCho(34:1e)/GPCho(34:0p)	11.3	12.1	10.2	9	9.2	7.1
GPCho(36:1)	74.1	73.3	73.2	54.2	60.8	55.2
GPCho(36:1e)/GPCho(36:0p)	1.4	1.2	1.1	0.7	0.8	0.7
GPCho(36:3)	49.2	48.7	49	40.9	39	41.6
GPCho(38:2)	8	8.3	7.5	3.3	4.4	3.4
GPCho(38:5)	48.7	45.8	45.3	39.9	33.8	38.8
GPCho(40:1)	29.8	24.3	29.1	25.8	22.9	22.5
GPCho(40:7)	20.5	15.6	17.4	12	10.4	12.6
GPEtn(32:0)	1.2	1.1	0.8	0.6	0	0.5
GPEtn(32:1)	0.8	0.7	0.9	0.4	0.3	0.5
GPEtn(34:0)	2.6	2.1	2.5	1.8	1.3	1.5
GPEtn(34:1)*	13.3	13.5	13.1	10.4	8.1	10.5
GPEtn(38:3e)/GPEtn(38:2p)	6.4	9.5	4.1	5.2	3.5	4
GPEtn(40:4e)/GPEtn(40:3p)	12.3	15.1	9.2	9.5	0	8.3
GPEtn(40:7)	19.5	18.3	18.4	18	16.3	16.4
GPEtn(42:10)	2.9	4	1.7	1.4	1.2	1.2
GPEtn(42:5)	1.8	1.9	1.6	1.4	1	1.3
GPGro(38:2)	0.9	0.8	0.7	0.5	0.6	0.5
GPIns(38:5)*	8.7	9.7	8.5	8.2	6.1	7.2
GPSer(34:1)	19.5	21.3	17.5	13.4	14.1	11.1
GPSer(38:1)	3.6	2.9	2.4	2.3	1.9	1.9
GPSer(40:2)	3	2.9	2.3	1.4	0.9	1.2
GPSer(40:3)	3.1	3.2	2.1	2.3	2.1	1.5
GPSer(42:3)	2.2	2.2	1.9	2	1.4	1.4

*LC-MS/MS data correlates with MALDI images

GPCho (PC) = phosphatidylcholine, GPEtn (PE) = phosphatidylethanolamine, GPGro (PG) = phosphatidylglycerol, GPIns (PI) = phosphatidylinositol, GPSer (PS) = phosphatidylserine