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1 Probability distribution of Dm

Consider a set of probability distributions {pj}, j = 1, . . . , l, over sequences of m + 1 letters
(as described in the main text), with each distribution pj carrying a weight factor πj. It is
convenient to view the weights {πj} as prior probabilities assigned to the distributions {pj}.
We can then write all relevant distributions in conditional form as follows.

πj ≡ p(j),

pj(x|z) ≡ p(x|z, j),
pj(x, z) ≡ p(x, z|j). (1)

The MJSD Dm can then be expressed in the simple form

Dm =
∑̀
j=1

∑
z

∑
x

p(x, z, j) log2

(
p(x|z, j)
p(x|z)

)
. (2)

Now consider a symbol sequence that is broken up into ` fragments, and that each conditional
distribution p(·|j), j = 1, . . . , ` represents the probability of occurrence of symbols within the
jth fragment. As mentioned above, the prior probabilities p(j) are then usually taken to be
proportional to the length of the jth fragment. Each probability in the above equation then
represents a relative frequency or ratio of counts. The fundamental count of interest here is
Nx,z,j, which denotes the number of times the word z is followed by symbol x in fragment j.
From this, we obtain

p(x, z, j) = Nx,z,j/N,

p(x|z, j) = Nx,z,j/Nz,j,

p(x|z) = Nx,z/Nz, (3)

where N =
∑

x,z,j Nx,z,j, Nz,j =
∑

x Nx,z,j, Nx,z =
∑

j Nx,z,j, and Nz =
∑

x Nx,z.

We will now proceed to show that Dm can generally be interpreted as a log likelihood ratio,
just as in the m = 0 case [1].
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1.1 Log-likelihood interpretation of Dm

Consider the following two hypotheses about the behavior of the Markov source –

Null hypothesis H0: The true, unknown joint distribution q(x, z, j) of x, z, and j is of the
separable form q(x|z)q(z, j), i.e., the distribution of a symbol only depends on the previous
m symbols preceding it, not on the particular sequence fragment it lies in.

Alternative hypothesis H1: The joint distribution q(x, z, j) is arbitrary.

Note that both hypotheses above are composite because they do not actually specify values
of probabilities. However, H1 has km+1l−1 free parameters while H0 has km(k−1)+kml−1
free parameters.

The likelihood of the observed sequence under H0 is given by

L(H0) =
∏
x,z,j

[q(x|z)q(z, j)]Nx,z,j , (4)

while the likelihood under H1 is given by

L(H1) =
∏
x,z,j

q(x, z, j)Nx,z,j . (5)

Since both hypotheses are composite, we can now ask for what values of the parameters q(·)
are the likelihoods maximized. Maximizing L(H0) under the constraints

∑
x q(x|z) = 1 and∑

z,j q(z, j) = 1 leads to the maximum likelihood estimates

q̂(x|z) =

∑
j Nx,z,j∑

x,j Nx,z,j

= p(x|z),

q̂(z, j) =

∑
x Nx,z,j∑

x,z,j Nx,z,j

= p(z, j). (6)

Similarly, the maximum likelihood estimate of q(x, z, j) under H1 turns out to be p(x, z, j).
Thus defining the likelihood ratio λ as

λ =
Lmax(H0)

Lmax(H1)
, (7)

we obtain

− ln λ = N
∑
j,z,x

p(j, z, x) ln

(
p(x|z, j)
p(x|z)

)
, (8)

where we have used Nx,z,j = Np(x, z, j) and p(x, z, j) = p(x|z, j)p(z, j). Therefore, the MJSD
Dm = − ln λ/(N ln 2), which shows that Dm is proportional to a log likelihood ratio.

1.2 The χ2 distribution of Dm

Having shown that Dm is proportional to − ln λ, it remains to show that − ln λ has a χ2

distribution. Indeed, it is a standard theorem in statistics that the asymptotic distribution
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of −2 ln λ is a χ2 distribution [2] for any maximum likelihood ratio, provided (a) H0 is
nested in H1, (b) the maximum likelihood is computed from a non-boundary point where the
likelihood function is differentiable, and (c) the unknown parameters in the two hypotheses
are real numbers that take values on an interval. Since all of these criteria are satisfied for
the above hypotheses, the theorem implies that in the limit of large sample size (large N),
−2 ln λ has a χ2 distribution with degrees of freedom equal to the difference in the number
of undetermined parameters for the two hypotheses. In our case, the number of degrees of
freedom is km+1l − 1− km(k − 1)− kml + 1 = km(l − 1)(k − 1). We thus obtain the result:
for large N , X = D(2N ln 2) has a χ2

d distribution with

d = km(k − 1)(l − 1) (9)

degrees of freedom.

2 Probability distribution of Dm
max

Consider now the problem of determining the point of maximum heterogeneity in a symbolic
sequence. This point is defined as the sequence position such that the two subsequences
split by that position have the maximum possible value of Dm, namely, Dm

max. As previously
shown, Dm follows a χ2 distribution; we now wish to find an analogous distribution for Dm

max.

[Supp Fig. 1 about here.]

As a starting point to determine the distribution of Dm
max, we begin with the assumption

that each value of Dm obtained by sliding the segmentation point along the sequence is i.i.d.
This assumption yields

P (Dm
max ≤ x) = P (Dm ≤ x)N (10)

where N is the length of the sequence. However, it is well known that the value of Dm

sampled at position i along the string is highly correlated with the values of Dm sampled at
i−1, i+1, and other surrounding positions [3,4,1]. An analytic form of the true distribution
of Dm

max has been derived for m = 0 as N approaches ∞ [4]:

P (D0
max ≤ x)

N→∞−→ exp
(
−2eA−

√
B(2N ln 2)x

)
, (11)

where

A = 2 ln ln N +
d

2
ln ln ln N − ln Γ

(
d

2

)
and B = 2 ln ln N, (12)

with d = km(k−1) degrees of freedom. The inaccuracy of Eq. (11) for finite length sequences
is depicted in Supplementary Figure 1a. The inaccuracy is especially large when P (Dm

max ≤ x)
is high, which is the most important part of a power curve should high confidence be desired.
Following methods originally proposed by [1], we turn to fitting the empirical distribution
of Dm

max to a modified form of the χ2 distribution.

We first use a Monte Carlo algorithm to determine an empirical distribution for Dm
max. The

significance of Dm
max depends on the length of the string N , so we perform the Monte Carlo
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analysis for various N and interpolate the fitted parameters. We also perform the analysis
for multiple values of m, k. The algorithm is as follows:

(1) For many values of N
(a) Select m and k.
(b) Generate a large number (here, 105) of random strings of length N .
(c) Determine D̂m

max on each of the randomly generated strings.
(2) Fit P (D̂m

max ≤ x) to {Fd[2N(ln 2)xβ]}Neff by determining appropriate Neff and β.
(3) Interpolate the values of the fitted parameters Neff and β.

[Supp Fig. 2 about here.]

Let D̂m
max be the observed maximum value found. We fit the empirical P (D̂m

max ≤ x) to the
parametrized form

P (D̂m
max ≤ x) = {Fd[2N(ln 2)xβ]}Neff (13)

where Fd is the cumulative distribution function of the χ2 distribution with d degrees of
freedom, d = km(k − 1)(`− 1) as found in Eq. 9, and β and Neff are fitting parameters that
reflect the lack of independence between values of Dm sampled at different positions along
the sequence.

We find that Neff is linearly related to log N . Also, while β is effectively a constant function
of log N for both m = 0 and m = 1, it has a weak linear dependence on log N for m = 2 and
k = 4. The empirical distribution of the D̂m

max is shown in Supplementary Figure 1b, c, and
d for k = 4. The fitted values of Neff and β are shown in Supplementary Figure 2 for k = 4.
The relations between Neff and β with respect to N are given in Supplementary Table 1 for
k = 2, 4.

[Supp Table 1 about here.]

3 Recursive sequence segmentation with Dm
max

In previous sections we have discussed theoretical aspects of the generalized Markovian
Jensen-Shannon divergence. In this section, we describe a sequence segmentation method
based on the MJSD. The method involves computing Dm for every position along a sequence.
If the maximum value, Dm

max, is large enough to be considered statistically significant, then
the position where Dm

max was found is a segmentation point. The sequence is split in two at
the segmentation point and the two resulting subsequences are again candidates for segmen-
tation. If Dm

max is not statistically significant, no further segmentation is carried out. The
algorithm is as follows:

(1) The algorithm takes as its argument the parameters:
• A string S of length N .
• Maximum allowed false positive rate α. The lower the value of α, the lower the number

of segmentation points reported.
• An integer L representing the shortest allowed string (this is necessary because vari-

ances of entropy estimates become large for strings that are too short).
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• An alphabet A that should be used.
• The order of the Markov source m.

(2) At each position i, L ≤ i ≤ N − L, the value Dm(p1, p2) is computed, with p1 derived
from the subsequence s1, . . . , si and p2 derived from the subsequence si+1, . . . , sN .

(3) Once Dm(p1, p2) has been computed at the N − 2L locations, the maximum, Dm
max, and

the location at which this maximum is attained, are found.
(4) The cumulative distribution function of Dm

max, given by Eq. 13 must be greater than
1 − α for i to be considered a valid segmentation point. This function is computed
using the appropriate fitted values of β and Neff . If i is a valid segmentation point, the
sequence S is segmented into two subsequences at i and the entire algorithm is iterated
using each subsequence as an input.

This recursive algorithm is related to several existing methods. The m = 0 case is derived
in [1]. A similar m = 0 algorithm in a theoretical statistics context is presented in [4,3]. An
alternative criterion for determining significance is proposed in [5]. The criterion is based
on a model selection argument, utilizing the Bayesian and Akaike information criteria to
trade off segmentation complexity and likelihood of the segmentation. The algorithm is also
closely related to the two-level block approach of [6], which can also be generalized to Markov
sources.

4 Size Effects in Concatenation Experiments

In this in silico experiment, we concatenate different pieces of different genomes and test
whether the segmentation procedure can determine the concatenation point accurately for
different values of the Markov order m. We select two genomes and extract a contiguous piece
of DNA with length N bases from a random location in both genomes. We then create a
new sequence which is composed of the two pieces concatenated together. This new sequence
therefore has length 2N . We find the point of maximum Dm in this new sequence. We then
repeat this entire procedure 105 times (by selecting different random pieces of DNA of size
N from the two genomes). If the segmentation algorithm were perfectly reliable, it would
consistently give a very high value for Dm

max at position N .

We evaluate this method (Supplementary Figure 3) by providing the upper and lower 90%
confidence intervals for the true location of Dm

max. The size of this interval depends on 1) the
genomic differences between the two genomes being assessed, and 2) the size of the segments.

We also use a control to check whether the algorithm is biased towards report Dm
max occurring

at the central position. We find the location corresponding to Dm
max for a contiguous stretch

of DNA of length 2N from a single genome. We do not find any tendency for Dm
max to occur

at the central position in this control simulation (Supplementary Figure 3 (c)).

[Supp Fig. 3 about here.]

Naturally, the segmentation works much better when the genomes have different distribu-
tions of nucleotides. This can be seen in Supplementary Figure 3 (a) where S. enterica (G+C
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is 52.1%) with M. loti (G+C is 62.7%). It may seem that the segmentation can detect differ-
ences in the genomes of S. enterica and E. coli, as depicted in Supplementary Figure 3 (b).
However, in Supplementary Figure 3 (b), this same pattern can be seen when only the S.
enterica genome is used to select random sequences from perhaps disparate sections of the
genome. Finally, taking a contiguous region of length 2N from the Salmonella genome yields
a control distribution for checking that our results are not a result of bias. Many other exper-
iments and controls confirm the conclusions that can be drawn from Supplementary Figure 3
(data not included), namely that, when segments from distinct genomes are concatenated,
the MJSD accurately picks the true segmentation point, and that this accuracy increases
with increasing Markov order.

The recursive algorithm’s inability to distinguish S. enterica from E. coli is plausible given
their phylogentic proximity. We show a similar result in the main text in the context of
finding horizontally transfered genes in artificial chimeric genomes.

5 Genomes used

We use several genomes to demonstrate the efficacy of the recursive MJSD method (Sup-
plementary Table 2). Known islands in S. enterica Typhi CT18 are given in Supplementary
Table 3.

[Supp Table 2 about here.]

[Supp Table 3 about here.]

6 Artificial horizontal gene transfer

Supplementary Table 4 shows similar results to those in the paper for windows of size 5kb.

[Supp Table 4 about here.]

7 Expression profile overlaps MJSD predictions

As discussed in the main text, the expression profile during S. enterica host infection in-
dicates that many known virulence genes are differentially regulated during infection. We
use the microarray data from [10] and examine genes that are upregulated more than 2-fold
during any phase of infection. The genes that are upregulated are enriched for those that are
horizontally aquired (P < 0.02, Fisher’s exact test).

The recursive MJSD method has particularly high sensitivity to these known virulence genes
(see main text). Thus we searched for other regions where the recursive MJSD algorithm
overlaps upregulated genes. Using this criterion, we find another 30 regions (encompassing
an additional 8% of the genome) that do not overlap existing annotations. These annotations
are visualized in Supplementary Figure 4.
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[Supp Fig. 4 about here.]

The overexpressed genes and locations of islands can be found in Supplementary Table 5.
This list contains several house-keeping genes (e.g., STY2301) that may be up-regulated
due to increased metabolism. In addition, there are regions that harbor known virulence
and drug resistant genes which may have originated from foreign ancestry (e.g., STY1076,
STY2632, STY2341). Furthermore, there are several genes contained in islands that overlap
or are adjacent to known pathogenicity islands (e.g., STY1076, STY2632, STY1990).

[Supp Table 5 about here.]

[Supp Table 6 about here.]

References

[1] Grosse, I., Bernaola-Galván, P., Carpena, P., Román-Roldán, R., Oliver, J., and Stanley, H. E.
(March, 2002) Analysis of symbolic sequences using the Jensen-Shannon divergence. Physical
Review E, 65, 1–15.

[2] Wilks, S. (1962) Mathematical Statistics, Wiley, New York, .
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List of Figures

1 Cumulative distribution function of Dm
max for k = 4. The solid curves

represent the empirical distribution function (as found through Monte Carlo
simulations) and the symbols represent the values given by Eq. 11 in panel
a) and by Eq. 13 with fitted parameters in panels b), c), and d). a) Plot
demonstrating that the theoretical cumulative distribution function of D0

max,
as defined by Eq. 11, is not a good fit to the true empirical distribution.
b,c,d) Fitted curves of the empirical distribution P (Dm

max ≤ x) as determined
through Monte Carlo simulation for orders m = 0 (b), m = 1 (c), and
m = 2 (d). The solid lines represent the empirical distribution and the
symbols represent the values given by a modified χ2 distribution with
fitted parameters Neff and β, which are determined by minimizing the
Kolmogorov-Smirnov distance between the empirical P (Dm

max ≤ x) and the
cumulative distribution function of the modified χ2 distribution. 9

2 Neff and β as a function of log10 N for m = 1, 2 and k = 4 (a similar plot for
m = 0 can be found in Figure 5 of [1]). Solid lines represent regression lines
obtained by least squares fitting. 10

3 The figures on the left show the probability density (smoothed histograms in
R) of the location of the segmentation point for N = 10000 and the figures
on the right show 90% confidence intervals about the central value N as a
fraction of N . The two lines for each value of m represent the upper and
lower confidence bounds (determined empirically). 11

4 A set of 30 novel predictions based on the recursive MJSD algorithm and
overexpressed genes during infection. These predictions (vertically spanning
gray bars) are overlaps between regions found by MJSD top-down (red bars)
and differentially expressed genes (purple bars). 12
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Supp Fig. 1. Cumulative distribution function of Dm
max for k = 4. The solid curves represent

the empirical distribution function (as found through Monte Carlo simulations) and the symbols
represent the values given by Eq. 11 in panel a) and by Eq. 13 with fitted parameters in panels b),
c), and d). a) Plot demonstrating that the theoretical cumulative distribution function of D0

max,
as defined by Eq. 11, is not a good fit to the true empirical distribution. b,c,d) Fitted curves of
the empirical distribution P (Dm

max ≤ x) as determined through Monte Carlo simulation for orders
m = 0 (b), m = 1 (c), and m = 2 (d). The solid lines represent the empirical distribution and the
symbols represent the values given by a modified χ2 distribution with fitted parameters Neff and
β, which are determined by minimizing the Kolmogorov-Smirnov distance between the empirical
P (Dm

max ≤ x) and the cumulative distribution function of the modified χ2 distribution.
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(a) S. enterica Typhi CT18 with M. loti
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(b) S. enterica Typhi CT18 with E. coli K12
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(c) two random segments of S. enterica Typhi CT18 (control)
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(d) a continuous strech of S. enterica Typhi CT18 (control).
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Supp Fig. 3. The figures on the left show the probability density (smoothed histograms in R) of the
location of the segmentation point for N = 10000 and the figures on the right show 90% confidence
intervals about the central value N as a fraction of N . The two lines for each value of m represent
the upper and lower confidence bounds (determined empirically).
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1 Parameters for fitting the power curves obtained by the Monte Carlo
algorithm on sequences with an alphabet size of k = 2, 4. The empirical
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to the relations Neff = a log10 N + b and β = c log10 N + d. Note that β is
constant when k = 2. 14

2 Genomes used in the main text, including their GenBank ID and GC content. 15

3 Known islands in the S. enterica Typhi CT18 genome. 16

4 Accuracy comparison of the top-down and bottom-up (5KB window) MJSD
averaged over 50 artificial genomes. 17

5 The overexpressed gene(s) and locations of 30 predicted pathogenecity
islands. A region is predicted to be a putative island if it contains a gene
that is overexpressed during infection and it is predicted by the recursive
MJSD method. 18

6 Performance of MJSD genome segmentation in finding islands predicted by
three other methods. 19

13



k = 2 k = 4

m a b c d a b c d

0 7.42 12.41 0 0.80 6.45 -7.38 0 0.80

1 6.84 11.45 0 0.80 5.65 -3.91 0 0.855

2 6.15 10.34 0 0.80 5.32 -6.385 0.004865 0.85
Supp Table 1
Parameters for fitting the power curves obtained by the Monte Carlo algorithm on sequences with
an alphabet size of k = 2, 4. The empirical distributions can be found in Supplementary Figure 1.
The rows correspond to different Markov orders. The values for Neff and β are found according to
the relations Neff = a log10 N + b and β = c log10 N + d. Note that β is constant when k = 2.
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Genome GenBank ID GC%

E. Coli K12 NC 000913.fna 50.79

M. loti NC 002678.fna 62.75

S. Typhi CT18 NC 003198.fna 52.09

S. Typhimurium LT2 NC 003197.fna 52.22

S. flexneri NC 004337.fna 50.89
Supp Table 2
Genomes used in the main text, including their GenBank ID and GC content.
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Island Start End

SPI-6 302172 361067

SPI-16 605515 609992

SopD2 Islet 964573 965531

Prophage 10 1008747 1051266

SPI-5 1085156 1092735

Bacteriophage 1538899 1572919

SPI-2 1625084 1664823

Novel Island 1776200 1791815

Bacteriophage 1887450 1933558

SPI-17 2460793 2465914

SPI-CS54 2597945 2615052

SPI-9 2743495 2759190

Bacteriophage 27 2759733 2782364

SPI-1 2859262 2899034

SPI-15 3053654 3060017

SPI-8 3132606 3139414

Bacteriophage 3515397 3549055

SPI-3 3883111 3900458

SPI-4 4321943 4346614

SPI-7 4409511 4543072

SPI-10 4683690 4716539
Supp Table 3
Known islands in the S. enterica Typhi CT18 genome.
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Supp Table 4
Accuracy comparison of the top-down and bottom-up (5KB window) MJSD averaged over 50
artificial genomes.
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Gene(s) Start End

STY0488 492176 503741

STY0759 759014 768486

STY0820 816412 828382

STY0971 964447 965613

STY1076 1049674 1053289

STY1162 1121634 1147125

STY1871 1774880 1792000

STY1990 1872445 1890333

STY2218 2051120 2070614

STY2301 2129017 2138707

STY2341 2166670 2182481

STY2378 2207487 2214049

STY2469 2296986 2301957

STY2542 2369339 2392979

STY2632 2461635 2467344

STY2695 2525426 2538406

STY2748 2583567 2587773

STY2758 2598512 2614007

STY2784 2615728 2648589

STY2900 2778589 2784301

STY2974 2845604 2852028

STY3030 2883036 2900870

STY3073, STY3076 2932201 2941344

STY3091 2954512 2958420

STY3469 3301838 3325920

STY3739 3577130 3590607

STY3906 3764873 3780180

STY3996 3862580 3870240

STY4217 4083086 4089075

STY4343 4222598 4246642
Supp Table 5
The overexpressed gene(s) and locations of 30 predicted pathogenecity islands. A region is predicted
to be a putative island if it contains a gene that is overexpressed during infection and it is predicted
by the recursive MJSD method.
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Supplementary Table 6. Performance of MJSD genome segmentation in finding islands predicted by three other methods. 
 

   Percentage of Islands predicted by MJSD (bp predicted/total bp in class)* 
Genome Accession SIGI IslandPick IslandPath SIGI & IPick SIGI & IPath IPick & IPath All Three Methods 

Anaeromyxobacter sp. K NC_011145. 
34.4% 
(15261/44422) 

55.2%  
(11645/21093) 

0.0%  
(0/5719) 

100.0%  
(41760/41760) 

0.0% 
(0/0) 

0.0% 
(0/0) 

100.0%  
(36408/36408) 

Burkholderia 
cenocepacia MC0-3 NC_010512. 

0.0% 
(0/12466) 

0.0%  
(0/13191) 

0.0% 
(0/0) 

0.0%  
(0/15346) 

100.0%  
(6820/6820) 

0.0%  
(0/18690) 

100.0%  
(39690/39690) 

Burkholderia 
cenocepacia MC0-3 NC_010515. 

21.8% 
(6782/31096) 

0.0%  
(0/32367) 

54.1%  
(17361/32118) 

100.0%  
(11558/11558) 

95.5%  
(124300/130109) 

100.0%  
(12459/12459) 

85.5%  
(64514/75425) 

Burkholderia multivorans 
ATCC 17616 NC_010084. 

49.5% 
(13128/26545) 

0.0% 
(0/0) 

0.0%  
(0/6131) 

0.0% 
(0/0) 

71.0%  
(52165/73481) 

0.0% 
(0/0) 

100.0%  
(70596/70596) 

Burkholderia 
pseudomallei 1710b NC_007435. 

62.2% 
(32442/52159) 

100.0%  
(28466/28466) 

0.0%  
(0/20967) 

0.0% 
(0/0) 

26.4%  
(11927/45230) 

100.0%  
(14463/14463) 

100.0%  
(70223/70223) 

Burkholderia 
pseudomallei 1710b NC_007434. 

42.5% 
(29792/70103) 

0.0% 
0/0) 

100.0%  
(18721/18721) 

63.9%  
(26713/41807) 

91.3%  
(77215/84542) 

0.0%  
(0/38) 

100.0%  
(66450/66450) 

Burkholderia 
vietnamiensis G4 NC_009256. 

0.0% 
(0/40424) 

2.1%  
(209/9863) 

61.9%  
(8847/14295) 

96.8%  
(46813/48373) 

90.4%  
(80592/89143) 

100.0%  
(14870/14870) 

95.9%  
(142576/148619) 

Escherichia coli 536 NC_008253. 
54.6% 
(94472/173132) 

0.0% 
(0/0) 

66.0%  
(6977/10577) 

0.0% 
(0/0) 

70.0%  
(94631/135117) 

0.0% 
(0/0) 

100.0%  
(103354/103354) 

Pseudomonas 
aeruginosa PA7 NC_009656. 

85.0% 
(49077/57731) 

100.0%  
(39823/39823) 

94.9%  
(72823/76739) 

90.6%  
(47307/52244) 

78.0%  
(47982/61479) 

79.8% 
 (28596/35850) 

99.2%  
(37415/37721) 

Pseudomonas putida 
KT2440 NC_002947. 

68.0% 
(49276/72501) 

55.8% 
(79162/141912) 

0.0%  
(0/33037) 

100.0%  
(4362/4362) 

100.0%  
(105091/105091) 

100.0%  
(284/284) 

100.0%  
(151003/151003) 

Pseudomonas putida 
GB-1 NC_010322. 

90.5% 
(42171/46606) 

16.7%  
(15673/93719) 

37.1%  
(14580/39270) 

100.0%  
(8688/8688) 

64.2%  
(35467/55236) 

0.0% 
(0/0) 

95.3%  
(129119/135548) 

Pseudomonas syringae 
pv. phaseolicola 1448A NC_005773. 

75.8% 
(75971/100197) 

19.7%  
(7431/37722) 

41.2%  
(29950/72723) 

0.0% 
(0/0) 

71.1%  
(58777/82639) 

95.6%  
(18393/19235) 

100.0%  
(113640/113640) 

Rhizobium etli CFN 42 NC_007761. 
17.9% 
(5931/33185) 

0.0%  
(0/33858) 

0.0% 
(0/0) 

0.0%  
(0/13861) 

100.0%  
(23822/23822) 

0.0% 
(0/0) 

91.2%  
(83235/91217) 

Rhodobacter 
sphaeroides 17025 NC_009428. 

0.0% 
(0/0) 

26.5%  
(34760/131097) 

0.0%  
(0/32851) 

100.0%  
(1122/1122) 

76.4%  
(17209/22538) 

25.5%  
(22323/87515) 

35.6%  
(25499/71627) 

Rhodopseudomonas 
palustris BisB5 NC_007958. 

67.0% 
(10385/15498) 

47.8%  
(28379/59381) 

0.0%  
(0/4694) 

0.0% 
(0/0) 

100.0%  
(12945/12945) 

16.2%  
(11761/72417) 

100.0%  
(68355/68355) 

Rhodopseudomonas 
palustris HaA2 NC_007778. 

15.2% 
(3338/21930) 

17.0%  
(28440/167558) 

0.0%  
(0/12462) 

61.3%  
(16494/26890) 

0.0%  
(0/18386) 

100.0%  
(28318/28318) 

98.3%  
(90742/92302) 

Shewanella baltica 
OS185 NC_009665. 

70.1% 
(43750/62398) 

52.3%  
(38838/74296) 

75.3%  
(24822/32972) 

79.6%  
(26955/33869) 

83.4%  
(31456/37702) 

92.0%  
(37953/41255) 

100.0%  
(50846/50846) 

Shewanella sp. ANA-3 NC_008577. 
19.2% 
(5126/26669) 

0.0% 
(0/0) 

0.0% 
(0/0) 

79.4%  
(37825/47657) 

71.3%  
(32252/45204) 

100.0%  
(414/414) 

100.0%  
(38947/38947) 

Sinorhizobium meliloti 
1021 NC_003047. 

0.0% 
(0/5846) 

0.0%  
(0/19934) 

0.0%  
(0/23869) 

0.0%  
(0/13450) 

100.0%  
(7003/7003) 

0.0% 
(0/0) 

100.0%  
(67918/67918) 

Vibrio parahaemolyticus 
RIMD 2210633 NC_004603. 

38.7% 
(30355/78448) 

23.8%  
(13009/54607) 

0.0%  
(0/9624) 

0.0%  
(0/89) 

90.8%  
(78465/86427) 

0.0% 
(0/0) 

98.3%  
(35515/36113) 

Summary  
52.2% 
(507257/971356) 

34.0%  
(325835/958887) 

43.4%  
(194081/446769) 

74.7%  
(269597/361076) 

80.0%  
(898119/1122914) 

54.9%  
(189834/345808) 

94.9%  
(1486045/1566002) 

 
* IPick = IslandPick; IPath = IslandPath 




