
Detailed Computational Modeling Methods 

Two Markov models, one representing hERG 1a/1b and another representing hERG 1a, 

were constructed using a previous model for IKr as a template
1
.  Simulations for model validation 

reproduced the experimental protocols, including temperature (exception: the E-4031 dose 

response curve was measured at room temperature, but was simulated without adjusting the 

models which were validated at near-physiological temperature).  Matlab and the ode23s 

integrator (absolute and relative error tolerance set to 10
-6

) were used to compute these 

simulations using a Windows XP desktop computer with a Pentium 4 processor.  Parameters 

were chosen using the interior-reflective Newton method
2
 and a least squares objective function 

to match action potential clamp data for hERG 1a/1b.  This was followed by manual refinements 

to improve correspondence of the models with all of the other data for hERG 1a/1b and to 

determine the hERG 1a parameters.  Equations for the hERG models are given in this online 

supplement.  The hERG models were incorporated into the Fink modified
3
 ten Tusscher action 

potential model
4
 in exchange for the native IKr.  Action potential simulations were computed 

using Rush and Larson integration
5
 for the cell model (fixed time step = 0.01 ms) and the 

CVODE
6
 integrator for the hERG models (several time steps per 0.01 ms).  They were 

implemented in C++ and run on Linux cluster nodes.  All action potential results show the 1000
th

 

beat at 1 Hz pacing. 



 

Online Figure I.  Comparison of hERG 1a/1b (blue) and hERG 1a (red) in the action 

potential without E-4031.  Shown are results from the 1000
th

 paced beat at 1 Hz for the Fink 

modified
3
 ten Tusscher action potential model

4
.  A&B) Action potentials.  C) hERG 1a/1b (blue) 

hERG 1a/1b (blue) and hERG 1a (solid red for normal mode, and dashed red for N-mode).  E-

4031-blocked state occupancies are zero for hERG 1a/1b and for hERG 1a (not shown) since the 

drug is not applied in this simulation.  APD90 (measure of the time elapsed between activation 

and 90% repolarization) for hERG 1a is 376 ms.  This is 38 ms longer than APD90 for hERG 

1a/1b.  The hERG 1a versus hERG 1a/1b prolongation is 30 ms when our models are 

incorporated into the Priebe and Beuckelmann action potential model
7
 (not shown).  

Prolongation occurs because N-mode occupancy results in slower activation, and slower closed-

state inactivation.  N-mode activation is movement from cn3, to cn2, to cn1.  This movement is 

slow compared with c3, to c2, to c1 movement in the normal mode because N-mode 
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activation/deactivation rates are reduced to 0.35 times the normal mode values.  A comparison of 

early growth and decay for solid versus dashed red lines in panels D-F illustrates this.  Closed-

state inactivation in the N-mode, which is movement from cn1 to in, is slower than the 

corresponding normal mode movement from c1 to i.  This is because the N-mode transition rate 

n2 is reduced to 0.35 times the corresponding normal mode transition rate 2.  Thus, recovery 

current through the open state arrives after a delay in N-mode compared to normal mode.  Panels 

F and H illustrate.  In panel F, early cn1 decay is slower than c1 decay.  In panel H, decay from 

normal mode state i begins at t = 60 ms while N-mode decay from state in does not begin until 

108 ms later, when cn1 finally finishes emptying into in. 

 

 

 

 

 

 

 

 

 

 

Online Figure II.  Pause-induced early afterdepolarizations for hERG 1a (red), but not for 

hERG 1a/1b (blue) in the presence of E-4031.   To test for susceptibility to early 

afterdepolarizations we used the Luo-Rudy midmyocardial ventricular action potential model
8
.  

Unlike the human-based Fink modified ten Tusscher model and the Priebe and Beuckelmann 
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model used elsewhere in this study, the guinea pig-based Luo-Rudy model has features that 

enable the reliable demonstration of early afterdepolarizations under appropriate conditions.
9, 10

   

This figure shows the Luo-Rudy model paced for 40 beats at a cycle length of 500 ms with 

hERG 1a or hERG 1a/1b in place of the native IKr.  Following these 40 beats (of which the last 

five are shown), a 1500 ms pause preceded an additional single paced beat.  [E-4031] was set to 

55 nM, the minimum concentration needed to cause an early afterdepolarization.  The formation 

of early afterdepolarizations for hERG 1a but not for hERG 1a/1b demonstrates a connection 

between the altered channel kinetics of hERG 1a and the clinical appearance of torsades de 

pointes arrhythmia in the presence of hERG blocking drugs following a pause
11

.    

 



Model Equations. 
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10 coupled ordinary differential equations 
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hERG 1a model transition rates (ms-1) 
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GhERG = 0.0048 mS, Fink modified3, ten Tusscher4  

GhERG = 0.015 mS, Priebe and Buekelmann7 

GhERG = 0.02614 mS, Luo and Rudy8  
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20 coupled ordinary differential equations 
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Calculation of Current 
 
GhERG = 0.0048 mS, Fink modified3, ten Tusscher4  
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GhERG = 0.02614 mS, Luo and Rudy8  
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