SUPPLEMENTARY MATERIALS

The Amplex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine; acetylresorufin) reacts with H_2O_2 with a 1:1 stoichiometry in the presence of peroxidase to produce the highly fluorescent oxidation product resorufin.¹ It is well-recognized that H_2O_2 can be reduced by AA in aqueous solution,² and there is evidence that this reaction can be accelerated by peroxidase in the presence of dyes with specific chemical structures, leading to an underestimate of $[H_2O_2]$ assayed in the presence of AA.³ However, previous studies suggest that AA does not interfere with Amplex red assay of H_2O_2 generated by the combination of glucose and glucose oxidase.¹ Furthermore, we confirmed that assay of H_2O_2 generated by the oxidation of 1 mM AA in oxygenated Holman's buffer at 37° was unaffected by 5 min incubation with ascorbate oxidase (AAO, 0.1 U/ml), which rapidly destroys AA (Figure 1A).⁴ We also confirmed that assay of authentic H_2O_2 (50 µM) was unaffected by addition of 200 µM BH₄ or 1 mM AA after its reaction in the Amplex red system, thus demonstrating that neither agent reduced the chromophore resorufin (Figure 1B).

Experiments performed in oxygenated deionized water confirmed that 1 μ M Fe³⁺ or Cu²⁺ (as chlorides) catalysed the generation of H₂O₂ from 1 mM AA. Cu²⁺ was by far the more active cation in this respect, and the concentrations of H₂O₂ measured after 30 min incubation with either ion closely matched published data in the literature,⁵ thereby providing additional validation of the Amplex red assay under the experimental conditions employed (Figure 1C).

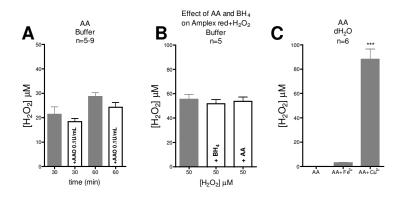


Figure 1

- Maeda H, Matsu-ura S, Nishida M, Senba T, Yamauchi Y, Ohmori H. Hydrogen peroxide-induced deacetylation of acetyl resorufin as a novel indicator reaction for fluorometric detection of glucose using only glucose oxidase. *Chem Pharm Bull (Tokyo)* 2001;49:294-8.
- 2. Tóth M, Kukor Z, Valent S. Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity. *Mol Hum Reprod* 2002;**8**:271-80.
- 3. Martinello F, da Silva EL. Ascorbic acid interference in the measurement of serum biochemical parameters: in vivo and in vitro studies. *Clin Biochem* 2006;**39**:396-403.
- 4. Kärkönen A, Fry SC. Effect of ascorbate and its oxidation products on H₂O₂ production in cellsuspension cultures of Picea abies and in the absence of cells. *J Exp Bot* 2006;**57**:1633-44.
- 5. Buettner GR. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. *J Biochem Biophys Methods* 1988;**16**:27-40.